Search results for "math.MP"

showing 5 items of 115 documents

From first to fourth order rational solutions to the Boussinesq equation

2020

Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in x and t. For each positive integer N , the numerator is a polynomial of degree N (N + 1) − 2 in x and t, while the denominator is a polynomial of degree N (N + 1) in x and t. So we obtain a hierarchy of rational solutions depending on an integer N called the order of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.

rogue waves PACS numbers : 33Q55rational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdBoussinesq equation
researchProduct

ETAT TOPOLOGIQUE DE L'ESPACE TEMPS A L'ECHELLE 0

2002

We propose in this research a new solution regarding the existence and the content of the initial spacetime singularity. In the context of topological field theory we consider that the initial singularity of space-time corresponds to a zero size singular gravitational instanton characterized by a Riemannian metric configuration (++++) in dimension D = 4. Connected with some unexpected topological data corresponding to the zero scale of space-time, the initial singularity is thus not considered in terms of divergences of physical fields but can be resolved in the frame of topological field theory. We get this result from the physical observation that the pre-spacetime is in a thermal equilib…

singularité initiale[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]amplitude topologique PACS : 0420D04.60.-m05.45.-a[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]État KMSinstanton gravitationnel singulierthéorie topologique des champsinvariant de singularité04.65.+e[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]02.40.Xx
researchProduct

First and second order rational solutions to the Johnson equation and rogue waves

2018

Rational solutions to the Johnson equation are constructed as a quotient of two polynomials in x, y and t depending on several real parameters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N (N + 1) in x, and t, 4N (N + 1) in y, depending on 2N − 2 real parameters for each positive integer N. We construct explicit expressions of the solutions in the cases N = 1 and N = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.

wronskiansJohnson equation4710A-[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]ratio-rogue wavesnal solutions37K10[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]33Q554735FgPACS numbers :4754BdFredholm determinants
researchProduct

The defocusing NLS equation : quasi-rational and rational solutions

2022

Quasi-rational solutions to the defocusing nonlinear Schrödinger equation (dNLS) in terms of wronskians and Fredholm determinants of order 2N depending on 2N − 2 real parameters are given. We get families of quasi-rational solutions to the dNLS equation expressed as a quotient of two polynomials of degree N (N + 1) in the variables x and t. We present also rational solutions as a quotient of determinants involving certain particular polynomials.

wronskiansdefocusing NLS equation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinants
researchProduct

Solutions to the Gardner equation with multi-parameters and the rational case

2022

We construct solutions to the Gardner equation in terms of trigonometric and hyperbolic functions, depending on several real parameters. Using a passage to the limit when one of these parameters goes to 0, we get, for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 3. We easily deduce solutions to the mKdV equation in terms of wronskians as well as rational solutions depending on 2N real parameters.

wronskiansrational solutionsGardner equation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct