Search results for "math.MP"

showing 10 items of 115 documents

Geometric optimal control of dissipative quantum systems

2009

International audience

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

Geometric optimal control of spin systems

2010

International audience

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

Hamiltonian monodromy from a Gauss-Manin monodromy

2009

International audience

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

Optimal control of two-level dissipative quantum systems

2008

International audience

[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

Kontsevich and Takhtajan construction of star product on the Poisson Lie group GL(2)

2001

Comparing the star product defined by Takhtajan on the Poisson-Lie group GL(2) and any star product calculated from the Kontsevich's graphs (any ''K-star product'') on the same group, we show, by direct computation, that the Takhtajan star product on GL(2) can't be written as a K-star product.

[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA][ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]FOS: Physical sciencesMathematical Physics (math-ph)Astrophysics::Cosmology and Extragalactic Astrophysics[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Quantum Algebra (math.QA)Astrophysics::Solar and Stellar Astrophysics[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Astrophysics::Earth and Planetary Astrophysics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Astrophysics::Galaxy AstrophysicsMathematical Physics
researchProduct

Modélisation auto cohérente du comportement viscoplastique en grandes déformations et à grandes vitesses d'un métal cubique centré préalablement choq…

2005

International audience

[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MECA.MSMECA] Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph][INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][SPI.MAT] Engineering Sciences [physics]/Materials[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph][INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputingMilieux_MISCELLANEOUS[SPI.MAT]Engineering Sciences [physics]/Materials
researchProduct

From finite-gap solutions of KdV in terms of theta functions to solitons and positons

2010

We degenerate the finite gap solutions of the KdV equation from the general formulation in terms of abelian functions when the gaps tends to points, to recover solutions of KdV equations in terms of wronskians called solitons or positons. For this we establish a link between Fredholm determinants and Wronskians.

[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]Mathematics::Spectral Theorytheta functionsKdVNonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Riemann surfaces:solitons[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitonspositons
researchProduct

Families of solutions to the KPI equation and the structure of their rational representations of order N

2018

We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of order 2N. These solutions called solutions of order N depend on 2N − 1 parameters. They can also be written as a quotient of two polynomials of degree 2N (N + 1) in x, y and t depending on 2N − 2 parameters. The maximum of the modulus of these solutions at order N is equal to 2(2N + 1) 2. We explicitly construct the expressions until the order 6 and we study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters.

numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754Bd
researchProduct

Residual a posteriori error estimation for frictional contact with Nitsche method

2023

We consider frictional contact problems in small strain elasticity discretized with finite elements and Nitsche method. Both bilateral and unilateral contact problems are taken into account, as well as both Tresca and Coulomb models for the friction. We derive residual a posteriori error estimates for each friction model, following [Chouly et al, IMA J. Numer. Anal. (38) 2018, pp. 921-954]. For the incomplete variant of Nitsche, we prove an upper bound for the dual norm of the residual, for Tresca and Coulomb friction, without any extra regularity and without a saturation assumption. Numerical experiments allow to assess the accuracy of the estimates and their interest for adaptive meshing …

residual a posteriori error estimates[PHYS.MECA.SOLID] Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]Coulomb frictionNitsche methodelasticity[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]Tresca frictionLagrange finite elementsunilateral contact
researchProduct

8-parameter solutions of fifth order to the Johnson equation

2019

We give different representations of the solutions of the Johnson equation with parameters. First, an expression in terms of Fredholm determinants is given; we give also a representation of the solutions written as a quotient of wronskians of order 2N. These solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polyno-mials of degree 2N (N +1) in x, t and 4N (N +1) in y depending on 2N −2 parameters. Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8 real parameters and we study the patterns of their modulus in the plane (x, y) and their …

rogue waves PACS numbers : 33Q55ratio- nal solutionswronskiansrational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Johnson equation4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdFredholm determinants
researchProduct