Search results for "math.MP"
showing 10 items of 115 documents
TANGENTIAL DEFORMATIONS ON FIBRED POISSON MANIFOLDS
2005
In a recent article, Cattaneo, Felder and Tomassini explained how the notion of formality can be used to construct flat Fedosov connections on formal vector bundles on a Poisson manifold $M$ and thus a star product on $M$ through the original Fedosov method for symplectic manifolds. In this paper, we suppose that $M$ is a fibre bundle manifold equipped with a Poisson tensor tangential to the fibers. We show that in this case the construction of Cattaneo-Felder- Tomassini gives tangential (to the fibers) star products.
Towards a local approach to fatigue, for the calculation of structures, applied to continuous fibre reinforced composite materials and structures
2018
The original concept of mechanical fatigue was linked to the failure of structures and was treated at first within the framework of Fracture Mechanics. Models developed to explain this phenomenon must therefore be able to be applied to structures: changing the structure means changes to the model and its identification. It is therefore judicious to develop models capable of treating both the damage processes and also able to be used within a local framework: to this end a method based on Damage Mechanics seems appropriate. This approach has long been employed and requires only the identification of damage processes at the level of the RVE (Representative Volume Element) to be used for any s…
The strictly-correlated electron functional for spherically symmetric systems revisited
2017
The strong-interaction limit of the Hohenberg-Kohn functional defines a multimarginal optimal transport problem with Coulomb cost. From physical arguments, the solution of this limit is expected to yield strictly-correlated particle positions, related to each other by co-motion functions (or optimal maps), but the existence of such a deterministic solution in the general three-dimensional case is still an open question. A conjecture for the co-motion functions for radially symmetric densities was presented in Phys.~Rev.~A {\bf 75}, 042511 (2007), and later used to build approximate exchange-correlation functionals for electrons confined in low-density quantum dots. Colombo and Stra [Math.~M…
Integrability of the one dimensional Schrödinger equation
2018
We present a definition of integrability for the one dimensional Schroedinger equation, which encompasses all known integrable systems, i.e. systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation
2019
International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.
Etude numérique d'équations aux dérivées partielles non linéaires et dispersives
2011
Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…
Integrable systems and moduli spaces of curves
2016
This document has the purpose of presenting in an organic way my research on integrable systems originating from the geometry of moduli spaces of curves, with applications to Gromov-Witten theory and mirror symmetry. The text contains a short introduction to the main ideas and prerequisites of the subject from geometry and mathematical physics, followed by a synthetic review of some of my papers (listed below) starting from my PhD thesis (October 2008), and with some open questions and future developements. My results include: • the triple mirror symmetry among P 1-orbifolds with positive Euler characteristic , the Landau-Ginzburg model with superpotential −xyz + x p + y q + z r with 1 p + …
Small-time bilinear control of Schrödinger equations with application to rotating linear molecules
2023
In [14] Duca and Nersesyan proved a small-time controllability property of nonlinear Schrödinger equations on a d-dimensional torus $\mathbb{T}^d$. In this paper we study a similar property, in the linear setting, starting from a closed Riemannian manifold. We then focus on the 2-dimensional sphere $S^2$, which models the bilinear control of a rotating linear top: as a corollary, we obtain the approximate controllability in arbitrarily small times among particular eigenfunctions of the Laplacian of $S^2$.
Deformation Quantization: Genesis, Developments and Metamorphoses
2002
We start with a short exposition of developments in physics and mathematics that preceded, formed the basis for, or accompanied, the birth of deformation quantization in the seventies. We indicate how the latter is at least a viable alternative, autonomous and conceptually more satisfactory, to conventional quantum mechanics and mention related questions, including covariance and star representations of Lie groups. We sketch Fedosov's geometric presentation, based on ideas coming from index theorems, which provided a beautiful frame for developing existence and classification of star-products on symplectic manifolds. We present Kontsevich's formality, a major metamorphosis of deformation qu…
Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy
2021
We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schr\"odinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--M…