Search results for "math.MP"

showing 10 items of 115 documents

Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation

2021

We degenerate the finite gap solutions of the KdV equation from the general formulation given in terms of abelian functions when the gaps tends to points, to get solutions to the KdV equation given in terms of Fredholm determinants and wronskians. For this we establish a link between Riemann theta functions, Fredholm determinants and wronskians. This gives the bridge between the algebro-geometric approach and the Darboux dressing method.

Nonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Spectral Theory
researchProduct

2N+1 highest amplitude of the modulus of the N-th order AP breather and other 2N-2 parameters solutions to the NLS equation

2015

We construct here new deformations of the AP breather (Akhmediev-Peregrine breather) of order N (or AP N breather) with 2N −2 real parameters. Other families of quasi-rational solutions of the NLS equation are obtained. We evaluate the highest amplitude of the modulus of AP breather of order N ; we give the proof that the highest amplitude of the AP N breather is equal to 2N + 1. We get new formulas for the solutions of the NLS equation, different from these already given in previous works. New solutions for the order 8 and their deformations according to the parameters are explicitly given. We get the triangular configurations as well as isolated rings at the same time. Moreover, the appea…

Nonlinear Sciences::Exactly Solvable and Integrable Systemsnumbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]37K10[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]4754Bd 1Nonlinear Sciences::Pattern Formation and Solitons33Q55 37K10 47.10A- 47.35.Fg 47.54.Bd4735Fg
researchProduct

Families of solutions to the CKP equation with multi-parameters

2020

We construct solutions to the CKP (cylindrical Kadomtsev-Petviashvili)) equation in terms of Fredholm determinants. We deduce solutions written as a quotient of wronskians of order 2N. These solutions are called solutions of order N ; they depend on 2N − 1 parameters. They can be written as a quotient of 2 polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N − 2 parameters. We explicitly construct the expressions up to order 5 and we study the patterns of their modulus in plane (x, y) and their evolution according to time and parameters.

Nonlinear Sciences::Exactly Solvable and Integrable Systemswronskiansrational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]37K10CKP equation PACS numbers : 33Q554735Fg4754BdFredholm determinants
researchProduct

From Fredholm and Wronskian representations to rational solutions to the KPI equation depending on 2N − 2 parameters

2017

International audience; We have already constructed solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants and wronskians of order 2N. These solutions have been called solutions of order N and they depend on 2N −1 parameters. We construct here N-order rational solutions. We prove that they can be written as a quotient of 2 polynomials of degree 2N(N +1) in x, y and t depending on 2N−2 parameters. We explicitly construct the expressions of the rational solutions of order 4 depending on 6 real parameters and we study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, b1, b2, b3.

PACS numbers : 33Q55 37K10 4710A- 4735Fg 4754BdRogue WavesWronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Kadomtsev Petviashvili Equation[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Fredholm Determinants[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Lumps
researchProduct

6-th order rational solutions to the KPI equation depending on 10 parameters

2017

International audience; Here we constuct rational solutions of order 6 to the Kadomtsev-Petviashvili equation (KPI) as a quotient of 2 polynomials of degree 84 in x, y and t depending on 10 parameters. We verify that the maximum of modulus of these solutions at order 6 is equal to 2(2N + 1)2 = 338. We study the patterns of their modulus in the plane (x, y) and their evolution according time and parameters a1, a2, a3, a4, a5, b1, b2, b3, b4, b5. When these parameters grow, triangle and rings structures are obtained.

PACS: 33Q55 37K10 47.10A- 47.35.Fg 47.54.Bd[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]WronskiansRogue waves[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]KP equationLumpsFredholm determinants
researchProduct

Existence and uniqueness for the Prandtl equations

2001

International audience; Under the hypothesis of analyticity of the data with respect to the tangential variable we prove the existence and uniqueness of the mild solution of Prandtl boundary layer equation. This can be considered an improvement of the results of [8] as we do not require analyticity with respect to the normal variable. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

Partial differential equation010102 general mathematicsPrandtl numberMathematical analysisGeneral Medicine01 natural sciencesEuler equations010101 applied mathematicssymbols.namesakeBoundary layer[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]symbolsUniqueness0101 mathematicsConvection–diffusion equationNavier–Stokes equationsVariable (mathematics)Mathematics
researchProduct

Quantum waveguides with magnetic fields

2019

International audience; We study generalised quantum waveguides in the presence of moderate and strong external magnetic fields. Applying recent results on the adiabatic limit of the connection Laplacian we show how to construct and compute effective Hamiltonians that allow, in particular, for a detailed spectral analysis of magnetic waveguide Hamiltonians. We apply our general construction to a number of explicit examples, most of which are not covered by previous results.

Physics010102 general mathematicsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)01 natural sciencesConnection (mathematics)Magnetic field81Q37 58J90[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Quantum mechanics0103 physical sciences010307 mathematical physicsLimit (mathematics)0101 mathematicsAdiabatic processLaplace operatorQuantumMathematical Physics
researchProduct

The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation.

2013

We construct here explicitly new deformations of the Peregrine breather of order 5 with 8 real parameters. This gives new families of quasi-rational solutions of the NLS equation and thus one can describe in a more precise way the phenomena of appearance of multi rogue waves. With this method, we construct new patterns of different types of rogue waves. We get at the same time, the triangular configurations as well as rings isolated. Moreover, one sees appearing for certain values of the parameters, new configurations of concentric rings.

PhysicsNLS equationPhysics and Astronomy (miscellaneous)BreatherPeregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Order (ring theory)01 natural sciencesConcentric ring010305 fluids & plasmasAkhmediev's solutions.35Q55; 37K10Classical mechanics[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Wronskians0103 physical sciencesPeregrine solitonAkhmediev's solutionsRogue wave[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsNonlinear Sciences::Pattern Formation and Solitons
researchProduct

Nilpotence of orbits under monodromy and the length of Melnikov functions

2021

Abstract Let F ∈ ℂ [ x , y ] be a polynomial, γ ( z ) ∈ π 1 ( F − 1 ( z ) ) a non-trivial cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a polynomial deformation d F + e ω = 0 of the integrable foliation given by F . We study different invariants: the orbit depth k , the nilpotence class n , the derivative length d associated with the couple ( F , γ ) . These invariants bind the length l of the first nonzero Melnikov function of the deformation d F + e ω along γ . We analyze the variation of the aforementioned invariants in a simple but informative example, in which the polynomial F is defined by a product of four lines. We study as well the relation of this b…

PhysicsPure mathematicsSequencePolynomialConjectureMelnikov functionAbelian integrals010102 general mathematicsStatistical and Nonlinear PhysicsIterated integralsCondensed Matter Physics01 natural sciencesNilpotence classFoliationDisplacement functionLimit cyclesMonodromySimple (abstract algebra)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Product (mathematics)0103 physical sciences010307 mathematical physics0101 mathematicsOrbit (control theory)ComputingMilieux_MISCELLANEOUS
researchProduct

Scattering on Riemannian Symmetric Spaces and Huygens Principle

2018

International audience; The famous paper by L. D. Faddeev and B. S. Pavlov (1972) on automorphic wave equation explored a highly romantic link between Scattering Theory (in the sense of Lax and Phillips) and Riemann hypothesis. An attempt to generalize this approach to general semisimple Lie groups leads to an interesting evolution system with multidimensional time explored by the author in 1976. In the present paper, we compare this system with a simpler one defined for zero curvature symmetric spaces and show that the Huygens principle for this system in the curved space holds if and only if it holds in the zero curvature limit.

PhysicsScattering010102 general mathematicsStatistical and Nonlinear Physics16. Peace & justiceWave equation01 natural sciencesHuygens–Fresnel principlesymbols.namesakeRiemann hypothesis[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencessymbols010307 mathematical physicsScattering theory0101 mathematicsLink (knot theory)Mathematical PhysicsMathematical physics
researchProduct