Search results for "math.MP"

showing 10 items of 115 documents

Wronskian representation of solutions of NLS equation, and seventh order rogue wave.

2012

This work is a continuation of a recent paper in which we have constructed a multi-parametric family of the nonlinear Schrodinger equation in terms of wronskians. When we perform a special passage to the limit, we get a family of quasi-rational solutions expressed as a ratio of two determinants. We have already construct Peregrine breathers of orders N=4, 5, 6 in preceding works; we give here the Peregrine breather of order seven.

WronskianBreather[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinant01 natural sciences010305 fluids & plasmassymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencessymbolsOrder (group theory)Limit (mathematics)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Rogue wave010306 general physicsRepresentation (mathematics)Nonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsMathematicsMathematical physics
researchProduct

Rotation Forms and Local Hamiltonian Monodromy

2017

International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …

[ MATH ] Mathematics [math]Pure mathematicsIntegrable systemFOCUS-FOCUS SINGULARITIESmath-phFOS: Physical sciencesDynamical Systems (math.DS)Homology (mathematics)01 natural sciencesSingularityMathematics::Algebraic Geometrymath.MPSYSTEMS0103 physical sciencesFOS: Mathematics0101 mathematicsAbelian groupMathematics - Dynamical Systems[MATH]Mathematics [math]010306 general physicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsNEIGHBORHOODS[PHYS]Physics [physics][ PHYS ] Physics [physics]010102 general mathematicsSpherical pendulumStatistical and Nonlinear PhysicsTorusMathematical Physics (math-ph)37JxxMonodromyStatistical and Nonlinear Physics; Mathematical PhysicsGravitational singularityPOINTSmath.DS
researchProduct

Topological Hopf algebras, quantum groups and deformation quantization

2003

After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologies on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities and provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described

[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]quantum groups[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]FOS: Physical sciences[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG]topological vector spacesMathematical Physics (math-ph)[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]deformation quantizationMathematics - Symplectic GeometryHopf algebras54C40 14E20 (primary) 46E25 20C20 (secondary)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Quantum Algebra (math.QA)Symplectic Geometry (math.SG)Mathematical Physics
researchProduct

$PT$-symmetry and Schrödinger operators. The double well case

2016

International audience; We study a class of $PT$-symmetric semiclassical Schrodinger operators, which are perturbations of a selfadjoint one. Here, we treat the case where the unperturbed operator has a double-well potential. In the simple well case, two of the authors have proved in [6] that, when the potential is analytic, the eigenvalues stay real for a perturbation of size $O(1)$. We show here, in the double-well case, that the eigenvalues stay real only for exponentially small perturbations, then bifurcate into the complex domain when the perturbation increases and we get precise asymptotic expansions. The proof uses complex WKB-analysis, leading to a fairly explicit quantization condi…

[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP]MSC: 35P20 81Q12 81Q20 35Q40Complex WKB analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]EigenvaluesMathematics::Spectral TheoryPT-symmetryMathematics - Spectral Theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]35P20 35Q40 81Q12 81Q20Quantization conditonSchrödinger operatorsMathematical Physics[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
researchProduct

Fractal Weyl law for open quantum chaotic maps

2014

We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.

[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesSemiclassical physicsDynamical Systems (math.DS)35B34 37D20 81Q50 81U05Upper and lower boundsMSC: 35B34 37D20 81Q50 81U05Fractal Weyl lawQuantization (physics)Mathematics - Analysis of PDEs[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (miscellaneous)Fractal[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Dynamical SystemsQuantumMathematical physicsMathematicsScattering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences - Chaotic DynamicsWeyl lawResonancesQuantum chaotic scattering[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Chaotic Dynamics (nlin.CD)Statistics Probability and UncertaintyOpen quantum mapComplex planeAnalysis of PDEs (math.AP)Annals of Mathematics
researchProduct

Using Global Radiation Model to Simulate Surface Temperature Impact on Snow Melt - Loven Glacier – Spitsberg

2009

International audience

[ SDE.MCG ] Environmental Sciences/Global Changes[ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulation[SDE.MCG] Environmental Sciences/Global Changes[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][SDE.MCG]Environmental Sciences/Global Changes[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][SDU.STU] Sciences of the Universe [physics]/Earth Sciences[SDU.STU]Sciences of the Universe [physics]/Earth Sciences[ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputingMilieux_MISCELLANEOUS
researchProduct

On the projective geometry of entanglement and contextuality

2019

[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Invariant theory[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Information quantiqueAlgebraic geometry[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Théorie des invariants[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Géométrie discrète et combinatoireGéométrie algébriqueQuantum Information[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Finite geometry[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Can there be a general nonlinear PDE theory for existence of solutions ?

2010

Updated version of the 2004 paper arxiv:math/0407026; Contrary to widespread perception, there is ever since 1994 a unified, general type independent theory for the existence of solutions for very large classes of nonlinear systems of PDEs. This solution method is based on the Dedekind order completion of suitable spaces of piece-wise smooth functions on the Euclidean domains of definition of the respective PDEs. The method can also deal with associated initial and/or boundary value problems. The solutions obtained can be assimilated with usual measurable functions or even with Hausdorff continuous functions on the respective Euclidean domains. It is important to note that the use of the or…

[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]MSC 35[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA]QA Mathematics (General)[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP][MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM][MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP][PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
researchProduct

Particular polynomials generating rational solutions to the KdV equation

2022

We construct here rational solutions to the KdV equation by means of particular polynomials. We get solutions in terms of determinants of order n for any positive integer n and we call these solutions, solutions of order n. So we obtain a very efficient method to get rational solutions to the KdV equation and we can construct very easily explicit solutions. In the following, we present some solutions until order 10.

[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct

Zero degree of derivation for multi-lump solutions to the KPI equation

2023

[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
researchProduct