Search results for "mathematical analysis"

showing 10 items of 2409 documents

Sensitivity analysis for time optimal orbit transfer

2001

The minimum time transfer of a satellite around the Earth is studied. In order to deal numerically with low thrusts, a new method is introduced: Based on a so-called noncontrollability function, the technique treats the ha1 time as a parameter. The properties of the method arc studied by means of an infinite dimensional sensitivity analysis. The numerical results obtained by this approach for very low thrusts are given

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyControl and OptimizationApplied Mathematics010102 general mathematicsMinimum timeMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyFunction (mathematics)Management Science and Operations ResearchTime optimal01 natural sciencesArc (geometry)020901 industrial engineering & automationControl theoryTransfer (computing)Physics::Space PhysicsOrbit (dynamics)SatelliteSensitivity (control systems)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Asymptotics of accessibility sets along an abnormal trajectory

2001

We describe precisely, under generic conditions, the contact of the accessibility set at time $T$ with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-Riemannian system of rank 2. As a consequence we obtain in sub-Riemannian geometry a new splitting-up of the sphere near an abnormal minimizer $\gamma$ into two sectors, bordered by the first Pontryagin's cone along $\gamma$, called the $\xLinfty$-sector and the $\xLtwo$-sector. Moreover we find again necessary and sufficient conditions of optimality of an abnormal trajectory for such systems, for any optimization problem.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyControl and OptimizationOptimization problemRank (linear algebra)02 engineering and technologycontrol-affine systems01 natural sciencesSet (abstract data type)020901 industrial engineering & automationFOS: Mathematicssingular trajectories0101 mathematicsMathematics - Optimization and ControlMathematics010102 general mathematicsMathematical analysisConstraint (information theory)Computational MathematicsCone (topology)Optimization and Control (math.OC)Control and Systems EngineeringControl systemTrajectoryAffine transformation[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct

Geodesic flow of the averaged controlled Kepler equation

2008

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyGeodesicGeneral MathematicsCut locusConformal map02 engineering and technologyKepler's equationFundamental theorem of Riemannian geometry01 natural sciencesConvexityIntrinsic metricsymbols.namesake020901 industrial engineering & automationSingularity0101 mathematicsorbit transferMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]cut and conjugate lociRiemannian metrics49K15 70Q05symbols[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct

Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust

2007

Abstract This article deals with the optimal transfer of a satellite between Keplerian orbits using low propulsion and is based on preliminary results of Epenoy et al. (1997) where the optimal trajectories of the energy minimization problem are approximated using averaging techniques. The averaged Hamiltonian system is explicitly computed. It is related to a Riemannian problem whose distance is an approximation of the value function. The extremal curves are analyzed, proving that the system remains integrable in the coplanar case. It is also checked that the metric associated with coplanar transfers towards a circular orbit is flat. Smoothness of small Riemannian spheres ensures global opti…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyIntegrable system02 engineering and technologyEnergy minimization01 natural sciencesHamiltonian systemsymbols.namesake020901 industrial engineering & automationBellman equationCircular orbit0101 mathematicsMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]symbolsSPHERESAstrophysics::Earth and Planetary Astrophysics[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverHamiltonian (quantum mechanics)Analysis
researchProduct

Energy minimization of single input orbit transfer by averaging and continuation

2006

AbstractThis article deals with the transfer between Keplerian coplanar orbits using low propulsion. We focus on the energy minimization problem and compute the averaged system, proving integrability and relating the corresponding trajectories to a three-dimensional Riemannian problem that is analyzed in details. The geodesics provide approximations of the extremals of the energy minimization problem and can be used in order to evaluate the optimal trajectories of the time optimal and the minimization of the consumption problems with continuation methods. In particular, minimizing trajectories for transfer towards the geostationary orbit can be approximated in suitable coordinates by straig…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyMathematics(all)GeodesicGeneral MathematicsMoyennation02 engineering and technologyPropulsionEnergy minimization01 natural sciencesContinuationAveraging020901 industrial engineering & automation0101 mathematicsMinimisation de l'énergieComputingMilieux_MISCELLANEOUSMathematicsTransfert orbital à poussée faibleMéthodes de continuation010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Orbital transfer with low thrustEnergy minimizationContinuation methodsOrbit (dynamics)Geostationary orbit[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]MinificationFocus (optics)
researchProduct

Conjugate times for smooth singular trajectories and bang-bang extremals

2003

Abstract In this paper we discuss the problem of estimating conjugate times along smooth singular or bang-bang extremals. For smooth extremals conjugate times can be defined in the generic case by using the intrinsic second order derivative or the exponential mapping. An algorithm is given which was implemented in the SR-case to compute the caustic [1] or in recent applied problems [5],[9]. We investigate briefly the problem of using this algorithm in the bang-bang case by smoothing the corners of extremals

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyPhysics::General Physics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technology01 natural sciences020901 industrial engineering & automationExponential mappingCaustic (optics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsBang bangBang–bang controlSmoothingMathematicsConjugateSecond derivative
researchProduct

Non subanalyticity of sub-Riemannian Martinet spheres

2001

Abstract Consider the sub-Riemannian Martinet structure (M,Δ,g) where M= R 3 , Δ= Ker ( d z− y 2 2 d x) and g is the general gradated metric of order 0 : g=(1+αy) 2 d x 2 +(1+βx+γy) 2 d y 2 . We prove that if α≠0 then the sub-Riemannian spheres S(0,r) with small radii are not subanalytic.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyRiemann manifoldRiemann surface010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyGeneral Medicine01 natural sciencesCombinatoricssymbols.namesake020901 industrial engineering & automationsymbolsOrder (group theory)SPHERES[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematics
researchProduct

Conjugate and cut loci of a two-sphere of revolution with application to optimal control

2008

Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyWork (thermodynamics)Class (set theory)Quantum dynamicsCut locus02 engineering and technologySpace (mathematics)01 natural sciencesspace and quantum mechanicsoptimal control020901 industrial engineering & automationconjugate and cut loci0101 mathematics2-spheres of revolutionMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]53C20; 53C21; 49K15; 70Q05Optimal controlMetric (mathematics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverAnalysis
researchProduct

Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits

2015

International audience; The aim of this note is to compare the averaged optimal coplanar transfer towards circular orbits when the costs are the transfer time transfer and the energy consumption. While the energy case leads to analyze a 2D Riemannian metric using the standard tools of Riemannian geometry (curvature computations, geodesic convexity), the time minimal case is associated to a Finsler metric which is not smooth. Nevertheless a qualitative analysis of the geodesic flow is given in this article to describe the optimal transfers. In particular we prove geodesic convexity of the elliptic domain.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]ComputationGeodesic convexity02 engineering and technologyRiemannian geometryCurvature01 natural sciencesDomain (mathematical analysis)Low thrust orbit transfersymbols.namesakeAveraging0203 mechanical engineeringFOS: MathematicsTime transferGeodesic convexityCircular orbit0101 mathematicsMathematics - Optimization and ControlMathematics020301 aerospace & aeronauticsApplied Mathematics010102 general mathematicsMathematical analysisOptimal controlOptimization and Control (math.OC)Metric (mathematics)symbolsRiemann-Finsler Geometry[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Mathematics::Differential Geometry
researchProduct

Discrete and differential homotopy in circular restricted three-body control

2010

The planar circular restricted three-body problem is considered. The control enters linearly in the equation of motion to model the thrust of the third body. The minimum time optimal control problem has two scalar parameters: The ratio of the primaries masses which embeds the two-body problem into the three-body one, and the upper bound on the control norm. Regular extremals of the maximum principle are computed by shooting thanks to continuations with respect to both parameters. Discrete and di erential homotopy are compared in connection with second order sucient conditions in optimal control. Homotopy with respect to control bound gives evidence of various topological structures of extr…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Homotopy lifting propertyHomotopy010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal control01 natural sciencesUpper and lower boundsRegular homotopyn-connectedMaximum principle0103 physical sciences[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics010303 astronomy & astrophysicsHomotopy analysis methodComputingMilieux_MISCELLANEOUSMathematics
researchProduct