Search results for "mesoscopic"
showing 10 items of 709 documents
Multiple mobile excitons manifested as sidebands in quasi-one-dimensional metallic TaSe3
2020
Charge neutrality and their expected itinerant nature makes excitons potential transmitters of information. However, exciton mobility remains inaccessible to traditional optical experiments that only create and detect excitons with negligible momentum. Here, using angle-resolved photoemission spectroscopy, we detect dispersing excitons in the quasi-one-dimensional metallic trichalcogenide, TaSe3. The low density of conduction electrons and the low dimensionality in TaSe3 combined with a polaronic renormalization of the conduction band and the poorly screened interaction between these polarons and photo-induced valence holes leads to various excitonic bound states that we interpret as intrac…
Roton-roton crossover in strongly correlated dipolar Bose-nonstnon condensates
2011
We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the relation to instabilities of dipolar Bose gases. In both regime…
Observation of a superfluid component within solid helium
2011
We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface. peerReviewed
Skyrmion formation due to unconventional magnetic modes in anisotropic multiband superconductors
2019
Multiband superconductors have a sufficient number of degrees of freedom to allow topological excitations characterized by skyrmionic topological invariants. In the most common, clean s -wave multiband systems, the interband Josephson and magnetic couplings favor composite vortex solutions, without a skyrmionic topological charge. It was discussed recently that certain kinds of anisotropies lead to hybridization of the interband phase difference (Leggett) mode with magnetic modes, dramatically changing the hydromagnetostatics of the system. Here we report this effect for a range of parameters that substantially alter the nature of the topological excitations, leading to solutions characteri…
Mesoscopic Simulations of Polyelectrolyte Electrophoresis in Nanochannels
2011
We present the results of mesoscopic dissipative particle dynamics (DPD) simulations of coupled electrohydrodynamic phenomena on the micro- and nanoscale. The effects of electroosmotic flow and slippage combined with polyelectrolyte electrophoresis are investigated in detail, taking full account of hydrodynamic and electrostatic interactions. Our numerical results are in excellent agreement with analytical calculations.
Anomalous diffusion of polymers in supercooled melts near the glass transition
2007
Two coarse-grained models for polymer chains in dense melts near the glass transition are investigated: the bond fluctuation lattice model, where long bonds are energetically favored, is studied by dynamic Monte Carlo simulation, and an off-lattice bead-spring model with Lennard-Jones forces between the beads is treated by Molecular Dynamics. We compare the time-dependence of the mean square displacements of both models, and show that they become very similar on mesoscopic scales (i.e., displacements larger than a bond length). The slowing down of motions near the glass transition is discussed in terms of the mode coupling theory and other concepts.
A New Colloid Model for Dissipative-Particle-Dynamics Simulations
2016
We propose a new model to simulate spherical colloids. This is a mesoscopic method based on the dissipative particle dynamics. The colloid is represented by a large spherical bead, and its surface interacts with the solvent beads through a pair of dissipative and stochastic forces. This new model extends the tunable-slip boundary condition [Eur. Phys. J. E 26, 115 (2008)] from planar surfaces to curved geometry, thus allows one to study colloids with slippery surfaces. Simulation results show good agreement with the prediction of hydrodynamic theories, indicating the hydrodynamic interactions are properly accounted in our new model.
Resistive State of Superconductor-Ferromagnet-Superconductor Josephson Junctions in the Presence of Moving Domain Walls
2019
We describe resistive states of the system combining two types of orderings—a superconducting and a ferromagnetic one. It is shown that in the presence of magnetization dynamics such systems become inherently dissipative and in principle cannot sustain any amount of the superconducting current because of the voltage generated by the magnetization dynamics. We calculate generic current-voltage characteristics of a superconductor-ferromagnet-superconductor Josephson junction with an unpinned domain wall and find the low-current resistance associated with the domain wall motion. We suggest the finite slope of Shapiro steps as the characteristic feature of the regime with domain wall oscillatio…
Ab initio electronic band structure calculation of InP in the wurtzite phase
2011
Abstract We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a = 0.4150 nm , c = 0.6912 nm , and an internal parameter u = 0.371 , showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actu…
Effects of water dielectric saturation on the space–charge junction of a fixed-charge bipolar membrane
2000
Abstract The dielectric saturation at the space–charge junction of a fixed-charge bipolar membrane is studied using the theoretical approach by Booth for the water dielectric constant and the Poisson equation for the electrical double layer at the junction. The numerical solution gives the electric field and dielectric constant profiles through the junction as well as the junction thickness as a function of the voltage drop. The water dielectric constant decreases substantially for the large electric fields that may occur at the narrow bipolar junction.