Search results for "mesoscopic"
showing 10 items of 709 documents
Renormalization of the Fröhlich constant for electrons in a quantum dot
2002
Recent experimental investigations of far-infrared attenuation in GaAs/InAs quantum dot in magnetic field and measurements of photoluminescence features for smaller pyramid-shape GaAs/InAs quantum dots indicated an enhancement of coupling of longitudinal optical phonons with confined electrons, which manifested itself in a significant increase of the effective Frohlich constant in comparison to its bulk value. We give a simple quasiclassical explanation of this enhancement and relate the renormalization of the Frohlich constant with the dot diameter.
Resonant Rayleigh scattering in quantum well structures
1996
Abstract We report continuous wave experiments on resonant Rayleigh scattering (RRS) performed on high quality GaAs AlGaAs quantum well structures. The simultaneous measurement of the resonant Rayleigh scattering and of the photoluminescence excitation (PLE) allows us to resolve very small differences between the two spectra. We show that, even in very good samples, there is a small but detectable Stokes shift of the RRS profile with respect to the PLE. It is also found that the RRS profile has a smaller linewidth and is sensitive to bound exciton transitions which are not detectable in the PLE. We compare our data with previous findings and discuss possible origins of the Stokes shift.
Exciton kinetics and luminescence in disordered InxGa 1-xP/GaAs quantum wells
2003
Trabajo presentado en el 7th International Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors, NOEKS 2003, celebrado en Karlsruhe (Alemania), del 23 al 28 de febrero de 2003
Microscopic carrier dynamics in quantum wells modulated by high-frequency lateral fields
2002
Abstract We have investigated the dynamics of photogenerated carriers in GaAs quantum wells under the influence of high-frequency fields produced by metal gratings and by surface acoustic waves (SAW's) using spatially and time-resolved photoluminescence (PL). The frequency and phase of the PL oscillations induced by the high-frequency field yield information about the spatial distribution of the carriers and, in the case of SAW's, about the band-gap modulation induced by the SAW strain.
Exciton fine structure splitting of single InGaAs self-assembled quantum dots
2004
Abstract We show how the resonant absorption of the ground state neutral exciton confined in a single InGaAs self-assembled quantum dot can be directly observed in an optical transmission experiment. A spectrum of the differential transmitted intensity is obtained by sweeping the exciton energy into resonance with laser photons exploiting the voltage induced Stark-shift. We describe the details of this experimental technique and some example results which exploit the ∼1 μeV spectral resolution. In addition to the fine structure splitting of the neutral exciton and an upper bound on the homogeneous linewidth at 4.2 K , we also determine the transition electric dipole moment.
Simultaneous observation of light localization and confinement in near-field optics
2001
We report on the observation, in direct space, of both light localization and confinement effects near lithographically designed structures. The sample is observed in the optical near-field zone with a Photon Scanning Tunneling Microscope (PSTM). Several patterns composed of a few periods of TiO2 dots, arranged as a hexagonal lattice, have been investigated. When the central dot of the pattern is removed, a phenomenon of light localization above the vacancy can be observed in the PSTM image. The occurrence of this phenomenon can be related to the variation of the electromagnetic local density of state.
Robust single-parameter quantized charge pumping
2008
This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.
One and two dimensional tunnel junction arrays in weak Coulomb blockade regime-absolute accuracy in thermometry
1999
We have investigated one and two dimensional (1D and 2D) arrays of tunnel junctions in partial Coulomb blockade regime. The absolute accuracy of the Coulomb blockade thermometer is influenced by the external impedance of the array, which is not the same in the different topologies of 1D and 2D arrays. We demonstrate, both by experiment and by theoretical calculations in simple geometries, that the 1D structures are better in this respect. Yet in both 1D and 2D, the influence of the environment can be made arbitrarily small by making the array sufficiently large.
Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice
2015
In a superlattice placed in crossed electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the miniband and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.
Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires
2013
The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. © 2013 AIP Publishing LLC.