Search results for "mesoscopic"
showing 10 items of 709 documents
Microscopic model for multiple flux transitions in mesoscopic superconducting loops
2006
A microscopic model is constructed which is able to describe multiple magnetic flux transitions as observed in recent ultra-low temperature tunnel experiments on an aluminum superconducting ring with normal metal - insulator - superconductor junctions [Phys. Rev. B \textbf{70}, 064514 (2004)]. The unusual multiple flux quantum transitions are explained by the formation of metastable states with large vorticity. Essential in our description is the modification of the pairing potential and the superconducting density of states by a sub-critical value of the persistent current which modulates the measured tunnel current. We also speculate on the importance of the injected non-equilibrium quasi…
Characterisation of Cooper Pair Boxes for Quantum Bits
2001
We have fabricated and measured single Cooper pair boxes (SCB) using superconducting single electron transistors (SET) as electrometers. The box storage performance for Cooper pairs was measured by observing the changes in the SCB island potential. We are also fabricating niobium structures, which are expected to have less problems with quasiparticle contamination than similar aluminium based devices because of the high critical temperature. The use of niobium may also reduce decoherence and thereby increase the time available for quantum logic operations.
Simulation of surface-controlled phase separation in slit pores: Diffusive Ginzburg-Landau kinetics versus Molecular Dynamics
2008
The phase separation kinetics of binary fluids in constrained geometry is a challenge for computer simulation, since nontrivial structure formation occurs extending from the atomic scale up to mesoscopic scales, and a very large range of time needs to be considered. One line of attack to this problem is to try nevertheless standard Molecular Dynamics (MD), another approach is to coarse-grain the model to apply a time-dependent nonlinear Ginzburg–Landau equation that is numerically integrated. For a symmetric binary mixture confined between two parallel walls that prefer one species, both approaches are applied and compared to each other. There occurs a nontrivial interplay between the forma…
A study of capillarity phenomena by using a computer-based simulation approach
2021
Liquid properties are relevant for the understanding of fundamental and applied sciences. Among these properties, those that can be traced back and explained through the surface tension are particularly interesting to study and reconstruct in educational terms. Traditional educational treatment of surface tension is often obscure or too complex, sometimes superficial or completely neglected. The aim of the research here described is to discuss in detail a mesoscopic model of liquids and show quantitative results obtained by a computer simulation approach. Looking at the educational aspect, the main advantage of this approach is that it allows the student/teacher to control the simulation pa…
Numerical investigation of one‐dimensional tunnel junction arrays at temperatures above the Coulomb blockade regime
1996
Arrays of tunnel junctions provide simple thermometric parameters in the limit where thermal excitations dominate over charging effects. We present numerical simulations for calculating the current versus voltage characteristics of an arbitrary one‐dimensional array at arbitrary temperatures on the premise of the ‘‘orthodox theory.’’ The purpose of the computer simulations is to investigate the suitability of tunnel junction arrays for thermometry at low temperatures when the analytical formulas do not hold and, specifically, to see the effect of background charges in this regime.
Intravalley spin-flip relaxation dynamics in single-layer WS2
2019
Two-dimensional Transition Metal Dichalcogenides (TMDs) have been widely studied because of the peculiar electronic band structure and the strong excitonic effects [1]. In these materials the large spin-orbit coupling lifts the spin degeneracy of the valence (VB) and the conduction band (CB) giving rise to the A and B interband excitonic transitions. In monolayer WS2, the spins of electrons in the lowest CB and in the highest VB at K/K' point of the Brillouin zone are antiparallel resulting in an intravalley dark exciton state at a lower energy than the bright exciton, see left panel of Fig.1. On the one hand, the presence of dark excitons has been revealed indirectly from the observation o…
Paramagnetic-diamagnetic interplay in quantum dots for non-zero temperatures
2000
In the usual Fock-and Darwin-formalism with parabolic potential characterized by the confining energy $\eps_o := \hbar\omega_o= 3.37$ meV, but including explicitly also the Zeeman coupling between spin and magnetic field, we study the combined orbital and spin magnetic properties of quantum dots in a two-dimensional electron gas with parameters for GaAs, for N =1 and N >> 1 electrons on the dot. For N=1 the magnetization M(T,B) consists of a paramagnetic spin contribution and a diamagnetic orbital contribution, which dominate in a non-trivial way at low temperature and fields rsp. high temperature and fields. For N >> 1, where orbital and spin effects are intrinsically coupled in a subtle w…
Gap solitons in nonlinear electrical transmission lines
2005
We study theoretically and numerically the properties of monochromatic waves in a nonlinear electrical transmission line,whose capacitance has a periodic spatial variation.ln the continuum limit and weak amplitude limit we reduce the characteristic equations of this system to NLS equation. We find analytical solutions for the voltage envelope, which propagate with frequency in the gap induced by the capacitance periodicity. Our numerical experiments show that, when the input voltage increases, the transmissivity in the gap increases and the voltage envelope approaches the stationnary shape predicted by theory.
A Novel Method Of Measuring Light Absorption On A Self-Assembled Single Quantum Dot
2005
Abstract. We present a novel method by wich excitonic interband optical transitions within single InAs self-assembled quantum dots can be directly observed in a transmission experiment. Due to the extremely high resolution of the tecnique, individual peaks associated to single exciton absorption resonances in single quantum dots can be spectrally resolved. Using this technique we investigate the oscillator strength, homogeneous linewidth and fine structure splitting in a collection of such individual resonances.
Realization of a robust single-parameter quantized charge pump
2008
This paper describes a novel scheme for quantized charge pumping based on single-parameter modulation. The device is realized in an AlGaAs-GaAs gated nanowire. A particular advantage of this realization is that operation in the quantized regime can be achieved in a potentially large range of amplitude and dc off-set of the driving signal. This feature together with the simple configuration might enable large scale parallel operation of many such devices.