Search results for "methane"

showing 10 items of 1763 documents

ChemInform Abstract: New Highly Asymmetric Henry Reaction Catalyzed by CuIIand a C1-Symmetric Aminopyridine Ligand, and Its Application to the Synthe…

2008

A new catalytic asymmetric Henry reaction has been developed that uses a C(1)-symmetric chiral aminopyridine ligand derived from camphor and picolylamine. A variety of aromatic, heteroaromatic, aliphatic, and unsaturated aldehydes react with nitromethane and other nitroalkanes in the presence of DIPEA (1.0 equiv), Cu(OAc)(2)*H(2)O (5 mol %), and an aminopyridine ligand (5 mol %) to give the expected products in high yields (up to 99 %), moderate-to-good diastereoselectivites (up to 82:18), and excellent enantioselectivities (up to 98 %). The reaction is air-tolerant and has been used in the synthesis of the antifungal agent miconazole.

AntifungalNitroaldol reactionNitromethanemedicine.drug_classLigandGeneral MedicineMedicinal chemistryCatalysisCamphorchemistry.chemical_compoundchemistrymedicineMiconazolemedicine.drugChemInform
researchProduct

Synthesis and structure of tetrakis(tetramethylammonium) octacosachlorooctaantimonate(III) [(CH3)4N]4Sb8Cl28

2000

Abstract The reaction between antimony trichloride and tetramethylammonium chloride in nitromethane gives transparent, irregular crystals of tetrakis(tetramethylammonium) octacosachlorooctaantimonate(III) [(CH 3 ) 4 N] 4 Sb 8 Cl 28 . Crystals are triclinic, space group P-1, a =11.846(2), b =12.217(2), c=14.120(3) A , α =95.71(3), β =101.39(3), γ =118.59(3)°, V=1713.7(5) A 3 , Z =1, d c =2.193, d m =2.17(2) Mg m −3 . The structure contains a structurally novel Sb 8 Cl 28 4- anion. It is composed of eight deformed octahedra, connected with each other by faces. In cavities formed by inorganic sublattice are located two crystallographically nonequivalent tetramethylammonium cations. One of them…

Antimony trichlorideTetramethylammoniumNitromethaneStereochemistryOrganic ChemistrydisorderTriclinic crystal systemAnalytical ChemistryIonInorganic ChemistryCrystallographychemistry.chemical_compoundchloroantimonates(III)chemistryOctahedronGroup (periodic table)Tetramethylammonium chloridecrystal and molecular structureSpectroscopyJournal of Molecular Structure
researchProduct

The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay

2019

The DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay is an easy and efficient method commonly used to determine the antioxidant capacity of many food matrices and beverages. In contrast with red wines, white wines are poorer in antioxidant polyphenolics, and the more hydrophilic sulfur-containing compounds in them may contribute significantly to their antioxidant capacity. The modification of the classical DPPH method, with a methanol-buffer and the measure of EC20 (quantity of sample needed to decrease the initial DPPH concentration by 20%) has shown that sulfur-containing compounds such as cysteine (0.037 &plusmn

AntioxidantDPPHmedicine.medical_treatmentPharmaceutical ScienceMethanethiolWineantioxidant capacity01 natural sciencesAntioxidantsCatechinAnalytical ChemistryEC<sub>20</sub>Ferulic acidchemistry.chemical_compoundcaractérisation sensorielleDrug Discovery[SDV.IDA]Life Sciences [q-bio]/Food engineeringCaffeic acidFood sciencefood and beveragesCatechinChimical engineering04 agricultural and veterinary sciences040401 food science3. Good healthChemistryChemistry (miscellaneous)Alimentation et NutritionMolecular Medicinesulfur compoundscapacité antioxydanteCoumaric AcidsDPPH;antioxidant capacity;Chardonnay;white wine;EC20;sensory oxidation level;sulfur compoundswhite winesensory oxidation levelChardonnayArticlelcsh:QD241-4410404 agricultural biotechnologyCaffeic Acidslcsh:Organic chemistryPhenolsPicratesmedicineEC20Food and NutritionGénie chimiqueHumansPhysical and Theoretical ChemistryBiologyvin blanc010401 analytical chemistryOrganic ChemistryBiphenyl CompoundsGlutathione0104 chemical sciencesHigh-Throughput Screening AssayschemistryPolyphenolDPPHMolecules
researchProduct

Over-Oxidation as the Key Step in the Mechanism of the MoCl5-Mediated Dehydrogenative Coupling of Arenes.

2015

Molybdenum pentachloride is an unusually powerful reagent for the dehydrogenative coupling of arenes. Owing to the high reaction rate using MoCl5, several labile moieties are tolerated in this transformation. The mechanistic course of the reaction was controversially discussed although indications for a single electron transfer as the initial step were found recently. Herein, based on a combined study including synthetic investigations, electrochemical measurements, EPR spectroscopy, DFT calculations, and mass spectrometry, we deduct a highly consistent mechanistic scenario: MoCl5 acts as a one-electron oxidant in the absence of TiCl4 and as two-electron oxidant in the presence of TiCl4, bu…

Aqueous solution010405 organic chemistryReducing agentchemistry.chemical_elementGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesCombinatorial chemistryCatalysis0104 chemical scienceslaw.inventionReaction ratechemistrylawMolybdenumReagentOrganic chemistryOxidative coupling of methaneElectron paramagnetic resonanceAngewandte Chemie (International ed. in English)
researchProduct

Unusual redox play of Mo(V/IV) during oxidative aryl–aryl coupling

2012

The oxidative treatment of a suitable 1,3-diarylpropene precursor by MoCl5 causes a series of redox steps yielding a dimer of dibenzo[a,c]cycloheptene. After the oxidative aryl–aryl bond formation, a C,H activation occurs providing a tropylium intermediate. Upon aqueous workup the metal waste acts as reductive media generating the dimer in an almost quantitative manner. The oxidative generation of the tropylium species as well as the subsequent redox play by the metal waste is unique and unprecedented. The dimeric compound can be oxidatively cleaved and subsequently decarboxylated providing the key intermediate of a previous synthesis of metasequirin-B derivatives.

Aqueous solutionArylDimerOrganic ChemistryOxidative phosphorylationPhotochemistryBiochemistryRedoxMedicinal chemistryMetalchemistry.chemical_compoundchemistryvisual_artDrug Discoveryvisual_art.visual_art_mediumCyclohepteneOxidative coupling of methaneTetrahedron Letters
researchProduct

Oxidative transformation of aryls using molybdenum pentachloride.

2012

Molybdenum pentachloride combines a strong Lewis acid character with an unusually high oxidation potential creating a powerful reagent for oxidative transformations. Since the oxidative coupling reaction of aryls is induced at an extraordinarily high reaction rate, a variety of labile groups, e.g. iodo, tert-alkyl, etc., are tolerated on the aromatic core. Furthermore, the co-formed molybdenum salts can either be exploited for template effects to obtain uncommon geometries in a preferred manner, or redox-play starts after aqueous workup. Therefore MoCl(5) represents a unique and easily available reagent.

Aqueous solutionMetals and Alloyschemistry.chemical_elementGeneral ChemistryOxidative phosphorylationMolybdenum pentachlorideCombinatorial chemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsReaction ratechemistryMolybdenumReagentMaterials ChemistryCeramics and CompositesOrganic chemistryOxidative coupling of methaneLewis acids and bases
researchProduct

Entropy of transfer of n-nitroalkanes from n-octane to water at 25�C

1984

Entropy of transfer of nitromethane, nitroethane, 1-nitrobutane, 1-nitropentane, and 1-nitrohexane from n-octane to water at 25°C is calculated using an electrostatic model. The calculations indicate that the electrostatic transfer entropy depends primarily on the dipole moment and the size of the-C−NO2 group, showing a trend which is similar to that previously found for the transfer free energy of the same process.

Aqueous solutionNitromethaneBiophysicsThermodynamicsPhotochemistryBiochemistrychemistry.chemical_compoundDipoleEntropy (classical thermodynamics)chemistryNitroethaneTransfer entropyPhysical and Theoretical ChemistryAliphatic compoundMolecular BiologyOctaneJournal of Solution Chemistry
researchProduct

Transition metal binding properties of the redox-active 1,4,7,10,13,16-hexa(ferrocenylmethyl)-1,4,7,10,13,16-hexaazacyclooctadecane and its electroch…

1999

Abstract Solution studies to elucidate the coordination behaviour and the electrochemical response of the ferrocene-functionalized polyazamacrocycle 1,4,7,10,13,16-hexa(ferrocenylmethyl)-1,4,7,10,13,16-hexaazacyclooctadecane (L1) by potentiometric methods and electrochemical techniques have been carried out. Potentiometric methods in the presence of Cd2+, Hg2+, Pb2+ and Zn2+ were carried out in 1,4-dioxane/water (70:30 v/v, 25°C, 0.1 mol dm−3 KNO3). Electrochemical studies were carried out in acetonitrile/dichloromethane (50:50 v/v, 25°C, 0.1 mol dm−3 TBAClO4) in the presence of transition metal ions and anions.

Aqueous solutionPotentiometric titrationInorganic chemistryHEXAElectrochemistryInorganic ChemistrySolventchemistry.chemical_compoundchemistryTransition metalMaterials ChemistryPhysical and Theoretical ChemistryAcetonitrileDichloromethane
researchProduct

Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction.

2018

18 pages; International audience; Microbial sulfate reduction (MSR) is thought to have operated very early on Earth and is often invoked to explain the occurrence of sedimentary sulfides in the rock record. Sedimentary sulfides can also form from sulfides produced abiotically during late diagenesis or metamorphism. As both biotic and abiotic processes contribute to the bulk of sedimentary sulfides, tracing back the original microbial signature from the earliest Earth record is challenging. We present in situ sulfur isotope data from nanopyrites occurring in carbonaceous remains lining the domical shape of stromatolite knobs of the 2.7-Gyr-old Tumbiana Formation (Western Australia). The anal…

ArcheanBiogeochemical cycleGeologic Sediments010504 meteorology & atmospheric sciencesIronGeochemistrychemistry.chemical_elementSulfides010502 geochemistry & geophysics01 natural scienceschemistry.chemical_compoundδ34S[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologySulfur IsotopesMicrobial matAnaerobiosisstromatoliteSulfateEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesGeneral Environmental SciencebiologyChemistrySulfatessulfur biogeochemical cycleWestern Australiabiology.organism_classification[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/GeochemistrySulfurDiagenesisTumbiana FormationStromatolite13. Climate actionAnaerobic oxidation of methaneGeneral Earth and Planetary SciencesOxidation-Reductionmicrobial sulfate reduction
researchProduct

A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1

2020

The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (τCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of τCH4 differences among 10 models are the flux of UV li…

Atmospheric ScienceAtmospheric chemistry010504 meteorology & atmospheric sciencesneural networkAnalytical chemistry010501 environmental sciences01 natural sciencesTropospherelcsh:Chemistrychemistry.chemical_compoundMESSyErdsystem-ModellierungMixing ratioTropospheric ozoneIsopreneNOx0105 earth and related environmental sciencesEMAChydroxyl radicalPhotodissociationlcsh:QC1-999Atmospheric chemistry neural networkmachine learningchemistrylcsh:QD1-99913. Climate actionCCMI[SDE]Environmental SciencesHydroxyl radicalWater vaporlcsh:Physicsmethane lifetime
researchProduct