Search results for "methodologies"

showing 10 items of 2106 documents

Artificial Neural Networks in Sports: New Concepts and Approaches

2001

Artificial neural networks are tools, which - similar to natural neural networks - can learn to recognize and classify patterns, and so can help to optimise context depending acting. These abilitie...

Artificial neural networkbusiness.industryComputer science05 social sciencesComputerApplications_COMPUTERSINOTHERSYSTEMSPhysical Therapy Sports Therapy and RehabilitationContext (language use)030229 sport sciencesMachine learningcomputer.software_genre050105 experimental psychology03 medical and health sciencesComputingMethodologies_PATTERNRECOGNITION0302 clinical medicineNatural (music)0501 psychology and cognitive sciencesOrthopedics and Sports MedicineArtificial intelligencebusinesscomputerInternational Journal of Performance Analysis in Sport
researchProduct

The Use of Artificial Intelligence in Disaster Management - A Systematic Literature Review

2019

Whenever a disaster occurs, users in social media, sensors, cameras, satellites, and the like generate vast amounts of data. Emergency responders and victims use this data for situational awareness, decision-making, and safe evacuations. However, making sense of the generated information under time-bound situations is a challenging task as the amount of data can be significant, and there is a need for intelligent systems to analyze, process, and visualize it. With recent advancements in Artificial Intelligence (AI), numerous researchers have begun exploring AI, machine learning (ML), and deep learning (DL) techniques for big data analytics in managing disasters efficiently. This paper adopt…

Artificial neural networkbusiness.industryComputer scienceDeep learningBig dataIntelligent decision support system020206 networking & telecommunications02 engineering and technologyLatent Dirichlet allocationConvolutional neural networkSupport vector machinesymbols.namesakeNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM)
researchProduct

Logo detection in images using HOG and SIFT

2017

In this paper we present a study of logo detection in images from a media agency. We compare two most widely used methods — HOG and SIFT on a challenging dataset of images arising from a printed press and news portals. Despite common opinion that SIFT method is superior, our results show that HOG method performs significantly better on our dataset. We augment the HOG method with image resizing and rotation to improve its performance even more. We found out that by using such approach it is possible to obtain good results with increased recall and reasonably decreased precision.

Artificial neural networkbusiness.industryComputer scienceHistogramFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformLogoPattern recognitionArtificial intelligencebusinessRotation (mathematics)Object detection2017 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)
researchProduct

Regularized RBF Networks for Hyperspectral Data Classification

2004

In this paper, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dimensionality are tested for six images containing six crop classes. Also, regularization, sparseness, and knowledge extraction are paid attention.

Artificial neural networkbusiness.industryComputer scienceMathematicsofComputing_NUMERICALANALYSISComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHyperspectral imagingPattern recognitionSupport vector machineComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computational Engineering Finance and ScienceRobustness (computer science)Computer Science::Computer Vision and Pattern RecognitionRadial basis function kernelRadial basis functionArtificial intelligenceAdaBoostbusinessCurse of dimensionality
researchProduct

Challenges of automatic processing of large amount of skin lesion multispectral data

2020

This work will describe the challenges involved in setting up automatic processing for a large differentiated data set. In this study, a multispectral (skin diffuse reflection images using 526nm (green), 663nm (red), and 964nm (infrared) illumination and autofluorescence (AF) image using 405 nm excitation) data set with 756 lesions (3024 images) was processed. Previously, using MATLAB software, finding markers, correctly segmenting images with dark edges and image alignment were the main causes of the problems in automatic data processing. To improve automatic processing and eliminate the use of licensed software, the latter was substituted with the open source Python environment. For more …

Artificial neural networkbusiness.industryComputer scienceMultispectral imageComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPython (programming language)Image (mathematics)Data setSoftwareSegmentationComputer visionArtificial intelligenceMATLABbusinesscomputercomputer.programming_languageBiophotonics—Riga 2020
researchProduct

Improving the Competency of Classifiers through Data Generation

2001

This paper describes a hybrid approach in which sub-symbolic neural networks and symbolic machine learning algorithms are grouped into an ensemble of classifiers. Initially each classifier determines which portion of the data it is most competent in. The competency information is used to generated new data that are used for further training and prediction. The application of this approach in a difficult to learn domain shows an increase in the predictive power, in terms of the accuracy and level of competency of both the ensemble and the component classifiers.

Artificial neural networkbusiness.industryComputer scienceTest data generationDecision tree learningDisjunctive normal formcomputer.software_genreMachine learningDomain (software engineering)ComputingMethodologies_PATTERNRECOGNITIONProblem domainComponent (UML)Classifier (linguistics)Data miningArtificial intelligencebusinesscomputer
researchProduct

Clustering Quality and Topology Preservation in Fast Learning SOMs

2008

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for data represented in multidimensional input spaces. In this paper, we describe Fast Learning SOM (FLSOM) which adopts a learning algorithm that improves the performance of the standard SOM with respect to the convergence time in the training phase. We show that FLSOM also improves the quality of the map by providing better clustering quality and topology preservation of multidimensional input data. Several tests have been carried out on different multidimensional datasets, which demonstrate better performances of the algorithm in comparison with the original …

Artificial neural networkbusiness.industryComputer sciencemedia_common.quotation_subjectTopology (electrical circuits)computer.software_genreTopologyData visualizationSOM FLSOM ClusteringComputingMethodologies_PATTERNRECOGNITIONQuality (business)Data miningbusinessCluster analysiscomputermedia_common
researchProduct

A Feed-Forward Neural Network for Robust Segmentation of Color Images

1999

A novel approach for segmentation of color images is proposed. The approach is based on a feed-forward neural network that learns to recognize the hue range of meaningful objects. Experimental results showed that the proposed method is effective and robust even in presence of changing environmental conditions. The described technique has been tested in the framework of the Robot Soccer World Cup Initiative (RoboCup). The approach is fully general and it may be successfully employed in any intermediate level image-processing task, where the color is a meaningful descriptor.

Artificial neural networkbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMobile robotTask (project management)Range (mathematics)GeographyFeedforward neural networkRobotComputer visionSegmentationArtificial intelligencebusinessHue
researchProduct

A Neural Architecture for 3D Segmentation

2003

An original neural scheme for segmentation of range data is presented, which is part of a more general 3D vision system for robotic applications. The entire process relies on a neural architecture aimed to perform first order image irradiance analysis, that is local estimation of magnitude and orientation of the image irradiance gradient.

Artificial neural networkbusiness.industryOrientation (computer vision)Computer scienceNoise reductionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)CurvatureEdge detectionRange (mathematics)Computer Science::Computer Vision and Pattern RecognitionComputer visionSegmentationArtificial intelligencebusiness
researchProduct

The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447 I. The X-ray View

2015

As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the $\gamma$-ray and radio-loud Narrow Line Seyfert galaxy ($\gamma$-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in $\gamma$-rays by the Fermi Large Area Telescope. It is the radio-loudest and only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. We analyze the X-ray spectrum and variability of this peculiar source using supplementary archival data from 2004 and 2011. The (0.5-10) keV spectrum…

AstrofísicaActive galactic nucleusAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRadio spectrumlaw.inventionTelescopeRelativistic beaminglaw0103 physical sciencesVery-long-baseline interferometryBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsMonitoring programAstrophysics - Astrophysics of GalaxiesGalaxySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)AstronomiaComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstrophysics - High Energy Astrophysical Phenomena
researchProduct