Search results for "methodologies"
showing 10 items of 2106 documents
Classification of Melanoma Lesions Using Sparse Coded Features and Random Forests
2016
International audience; Malignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the…
Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text
2016
International audience; Depression is a major cause of disability world-wide. The present paper reports on the results of our participation to the depression sub-challenge of the sixth Audio/Visual Emotion Challenge (AVEC 2016), which was designed to compare feature modalities ( audio, visual, interview transcript-based) in gender-based and gender-independent modes using a variety of classification algorithms. In our approach, both high and low level features were assessed in each modality. Audio features were extracted from the low-level descriptors provided by the challenge organizers. Several visual features were extracted and assessed including dynamic characteristics of facial elements…
Visual knowledge processing in computer-assisted radiology: A consultation system
1992
This paper presents Visual Heuristics, a consultation system for diagnosis based on thorax radiograph recording. Visual Heuristics uses both prototypical representations of physiological and pathological states and reasoning aimed to infer conclusions from pathological or physiological conditions, establishing correspondences between pathological or physiological states and semantic descriptions of images. Images are assembled with groups of descriptors that guide the recognition process, achieving the possibility of comparisons with real images on the basis of 'expected' images. The system may be employed to generate a dynamic atlas that does not contain proper images, but generates them.
A New Myohaptic Device to Assess Wrist Function in the Lab and in the Clinic – The Wristalyzer
2008
Wristalyzer is a portable robotic device combining haptic technology with electromyographic assessment. It allows to assess wrist motion in physiological and pathological conditions by applying loads and mechanical oscillations, taking into account the ergonomy and the angular positioning of the joints. The wristalyzer works in a free or loaded mode for assessment of metrics of motion and tremor, analyzes the behavior of the wrist joints and the associated muscle activities during delivery of mechanical oscillations, estimates the maximal voluntary contraction, assesses automatically the impedance of the wrist for assessment of rigidity or spasticity. Position, torques and electromyographic…
An Improved Skew Angle Detection and Correction Technique for Historical Scanned Documents Using Morphological Skeleton and Progressive Probabilistic…
2017
International audience; Skew detection is a crucial step for document analysis systems. Indeed, it represents one of the basic challenges, especially in case of historical documents analysis. In this paper, we propose a novel robust skew angle detection and correction technique. Morphological Skeleton is introduced to significantly reduce the amount of data to treat by removing the redundant pixels and keeping only the central curves of the image components. The proposed method then uses Progressive Probabilistic Hough Transform (PPHT) to identify image lines. A special procedure is finally applied in order to estimate the global skew angle of the document image from these detected lines. E…
GPU-Based Occlusion Minimisation for Optimal Placement of Multiple 3D Cameras
2020
This paper presents a fast GPU-based solution to the 3D occlusion detection problem and the 3D camera placement optimisation problem. Occlusion detection is incorporated into the optimisation problem to return near-optimal positions for 3D cameras in environments containing occluding objects, which maximises the volume that is visible to the cameras. In addition, the authors’ previous work on 3D sensor placement optimisation is extended to include a model for a pyramid-shaped viewing frustum and to take the camera’s pose into account when computing the optimal position.
A Comparative Study to Analyze the Performance of Advanced Pattern Recognition Algorithms for Multi-Class Classification
2021
This study aims to implement the following four advanced pattern recognition algorithms, such as “optimal Bayesian classifier,” “anti-Bayesian classifier,” “decision trees (DTs),” and “dependence trees (DepTs)” on both artificial and real datasets for multi-class classification. Then, we calculated the performance of individual algorithms on both real and artificial data for comparison. In Sect. 1, a brief introduction is given about the study. In the second section, the different types of datasets used in this study are discussed. In the third section, we compared the classification accuracies of Bayesian and anti-Bayesian methods for both the artificial and real-life datasets. In the four…
Change-driven Image Architecture on FPGA with adaptive threshold for Optical-Flow Computation
2006
Optical flow computation has been extensively used for object motion estimation in image sequences. However, the results obtained by most optical flow techniques are as accurate as computationally intensive due to the large amount of data involved. A new strategy for image sequence processing has been developed; pixels of the image sequence that significantly change fire the execution of the operations related to the image processing algorithm. The data reduction achieved with this strategy allows a significant optical flow computation speed-up. Furthermore, FPGAs allow the implementation of a custom data-flow architecture specially suited for this strategy. The foundations of the change-dr…
A Structural $\mathcal{ SHOIN(D)}$ Ontology Model for Change Modelling
2013
This paper presents a complete structural ontology model suited for change modelling on \(\mathcal{ SHOIN(D)}\) ontologies. The application of this model is illustrated along the paper through the description of an ontology example inspired by the UOBM ontology benchmark and its evolution.
OWL2: The Next Step for OWL
2008
Since achieving W3C recommendation status in 2004, the Web Ontology Language (OWL) has been successfully applied to many problems in computer science. Practical experience with OWL has been quite positive in general; however, it has also revealed room for improvement in several areas. We systematically analyze the identied short-comings of OWL, such as expressivity issues, problems with its syntaxes, and deficiencies in the definition of OWL species. Furthermore, we present an overview of OWL 2 -- an extension to and revision of OWL that is currently being developed within the W3C OWL Working Group. Many aspects of OWL have been thoroughly reengineered in OWL 2, thus producing a robust plat…