Search results for "methylcytidine"

showing 2 items of 2 documents

Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation

2016

ABSTRACT A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology,…

0301 basic medicineRetroelementsRNA methylationChemical biologyReviewBiologyMethylationCatalysisEpigenesis GeneticSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipNucleic AcidsAnimalsHumansEpigeneticsDNA (Cytosine-5-)-MethyltransferasesGene SilencingMolecular BiologytRNAPhylogenyGeneticsNucleic acid methylationDNA methylationBinding SitesepigeneticsCell BiologyTRNA Methyltransferasesmethylcytidine030104 developmental biologyCell Transformation NeoplasticBiochemistrychemistryStructural biologyGene Expression RegulationNucleic acidRNA methylationDNAProtein BindingRNA Biology
researchProduct

Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

2014

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell siz…

Small RNARNA methylationBiologyNSun2MethylationGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesMisuMice0302 clinical medicineRNA TransferGene expressionAnimalsHumans5‐methylcytidine ; Misu ; Nsun2 ; Rna ModificationMolecular Biology030304 developmental biology5-methylcytidineRegulation of gene expression0303 health sciencesTRNA methylationGeneral Immunology and MicrobiologyGeneral NeuroscienceGene Expression ProfilingRNABrainArticlesMethylationMethyltransferasesRibonuclease PancreaticRNA modificationMolecular biologyOxidative StressGene Expression RegulationTransfer RNANervous System Diseases030217 neurology & neurosurgery5‐methylcytidine
researchProduct