Search results for "metsänarviointi"

showing 6 items of 6 documents

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Airborne-laser-scanning-derived auxiliary information discriminating between broadleaf and conifer trees improves the accuracy of models for predicti…

2020

Managing forests for ecosystem services and biodiversity requires accurate and spatially explicit forest inventory data. A major objective of forest management inventories is to estimate the standing timber volume for certain forest areas. In order to improve the efficiency of an inventory, field based sample-plots can be statistically combined with remote sensing data. Such models usually incorporate auxiliary variables derived from canopy height models. The inclusion of forest type variables, which quantify broadleaf and conifer volume proportions, has been shown to further improve model performance. Currently, the most common way of quantifying broadleaf and conifer forest types is by ca…

0106 biological sciencesCanopysekametsätMean squared errorForest managementBiodiversityClimate changeairborne laser scanningManagement Monitoring Policy and Law010603 evolutionary biology01 natural sciencesforest type mapStatisticscanopy height modelimage-based point cloudsNature and Landscape ConservationForest inventorymetsäsuunnitteluForestryPercentage pointmetsänarviointipuutavaranmittausOrdinary least squaresordinary least squares regression modelsEnvironmental sciencemixed and heterogeneously structured forestkaukokartoitushigh-precision forest inventorymetsänhoitobest fit modelsmerchantable timber volumelaserkeilaus010606 plant biology & botanyForest Ecology and Management
researchProduct

Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion

2020

Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based reflectance models is an interesting approach for estimating chlorophyll concentrations that are good indicators of vegetation health. The objective of this study was to develop a novel approach for retrieving chlorophyll a and b values from remotely sensed data by inverting the stochastic model of leaf optical properties using a one-dimensional convolutional neural network. The inversion results and retrieved values are validated in two ways: A classical machine learning val…

Chlorophyll boptical propertiesChlorophyll aklorofylli010504 meteorology & atmospheric sciencesCorrelation coefficientStochastic modelling0211 other engineering and technologiesconvolutional neural network02 engineering and technologyneuroverkotoptiset ominaisuudet01 natural sciencesConvolutional neural networkchemistry.chemical_compoundchlorophylllcsh:Scienceoptical properties; convolutional neural network; deep learning; chlorophyll; stochastic modeling; physical parameter retrieval; forestry021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingstokastiset prosessitbusiness.industryDeep learningspektrikuvausforestryHyperspectral imagingdeep learningmetsänarviointikoneoppiminenchemistryChlorophyllGeneral Earth and Planetary Scienceslcsh:QArtificial intelligencekaukokartoitusmetsänhoitobusinessphysical parameter retrievalstochastic modelingRemote Sensing; Volume 12; Issue 2; Pages: 283
researchProduct

Modeling Forest Tree Data Using Sequential Spatial Point Processes

2021

AbstractThe spatial structure of a forest stand is typically modeled by spatial point process models. Motivated by aerial forest inventories and forest dynamics in general, we propose a sequential spatial approach for modeling forest data. Such an approach is better justified than a static point process model in describing the long-term dependence among the spatial location of trees in a forest and the locations of detected trees in aerial forest inventories. Tree size can be used as a surrogate for the unknown tree age when determining the order in which trees have emerged or are observed on an aerial image. Sequential spatial point processes differ from spatial point processes in that the…

Statistics and Probability010504 meteorology & atmospheric scienceshistory-dependent modelpaikkatietoanalyysi01 natural sciencesPoint process010104 statistics & probabilityilmakuvakartoitusfunctional summary statisticsFeature (machine learning)spatial point processes0101 mathematicsmaximum likelihoodtilastolliset mallitAerial image0105 earth and related environmental sciencesGeneral Environmental ScienceForest dynamicsSpatial structureApplied Mathematics15. Life on landAgricultural and Biological Sciences (miscellaneous)Tree (graph theory)metsänarviointiData setEnvironmental sciencekaukokartoitusStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesPoint process modelsCartographyordered sequence
researchProduct

Estimation of forest stand characteristics using individual tree detection, stochastic geometry and a sequential spatial point process model

2022

Airborne Laser Scanning (ALS) results in point-wise measurements of canopy height, which can further be used for Individual Tree Detection (ITD). However, ITD cannot find all trees because small trees can hide below larger tree crowns. Here we discuss methods where the plot totals and means of tree-level characteristics are estimated in such context. The starting point is a previously presented Horvitz–Thompson-like (HT-like) estimator, where the detectability is based on the larger tree crowns and a tuning parameter that models the detection condition. We propose a new method which is based on modeling the spatial pattern of hidden tree locations using a sequential spatial point process mo…

inventointilaserlaitteetpuut (kasvit)Horvitz-Thompson-like estimatorlasertekniikkametsätmittausmenetelmätmetsänarviointilaseritmittauslaitteettiheystree height [stand density]kaukokartoituspuustoforest inventoryAirborne Laser Scanning
researchProduct

Fotogrammetrisen 3D-latvusmallin ja hyperspektriaineiston käyttö aluetason puustotulkinnassa

2017

Seloste artikkelista Tuominen S., Balazs A., Honkavaara E., Polonen I., Saari H., Hakala T., Viljanen N. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. https://doi. org/10.14214/sf.7721

ta113CanopyHyperspectral imagingForestryForestrymallitSD1-669.5ta4112latvusmetsänarviointiGeographypuustoCartography
researchProduct