Search results for "microbalance"

showing 10 items of 70 documents

Electrochemistry and electrocatalysis of a Pt@poly(neutral red) hybrid nanocomposite

2015

Abstract Platinum nanoparticles have been deposited on a scaffold of electrosynthetized phenazine-type polymer, the poly(neutral red). This work discusses the role of poly(neutral red) in the electrochemistry and electrocatalysis properties of the hybrid nanocomposite. In situ combination of electrochemical quartz crystal microbalance and visible-near infrared spectroscopy (cyclic Vis-NIR spectroelectrogravimetry) and a combination of electrochemical impedance spectroscopy and mass impedance spectroscopy ( ac -electrogravimetry) were employed. Two electrochemical processes have been identified in our experimental conditions. On the one hand, the radical cations (polarons) localized in the i…

Materials scienceNanocompositeGeneral Chemical EngineeringElectrogravimetryInorganic chemistryElectrochemistryInfrared spectroscopyQuartz crystal microbalanceElectrocatalystPlatinum nanoparticlesElectrochemistryDielectric spectroscopyElectrochimica Acta
researchProduct

Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells

2010

Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 ± 4) nm and rods with a size of (38 ± 7) nm × (17 ± 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to v…

Materials scienceSurface PropertiesBiomedical EngineeringAnalytical chemistryMetal NanoparticlesNanoparticle02 engineering and technology010402 general chemistryToxicology01 natural sciencesCell LineSurface-Active AgentsCell MovementMicroscopyAnimalsParticle SizeCytoskeletonDose-Response Relationship DrugCetrimoniumEpithelial CellsQuartz crystal microbalance021001 nanoscience & nanotechnology0104 chemical sciencesColloidal goldCetrimonium CompoundsBiophysicsParticleSurface modificationGoldParticle sizeReactive Oxygen Species0210 nano-technologyBiosensorNanotoxicology
researchProduct

Enzymatic Synthesis and Surface Deposition of Tin Dioxide using Silicatein-α

2011

Nanostructured tin dioxide was synthesized by making use of the catalytic activity of silicatein-α. TEM, HRTEM, and XRD revealed the formation of cassiterite SnO2. Surface bound silicatein retains its biocatalytic activity. This was demonstrated by immobilizing silicatein on glass surfaces using a histidine-tag chelating anchor. The subsequent deposition of SnO2 on glass was monitored by quartz crystal microbalance (QCM) measurements and scanning electron microscopy (SEM). This new aspect of silicatein activity toward the formation of metal oxides other than SiO2, TiO2, and BaTiO3 opens up new vistas in composite material synthesis.

Materials scienceTin dioxideScanning electron microscopeGeneral Chemical EngineeringCassiteriteInorganic chemistryNanoparticleGeneral ChemistryQuartz crystal microbalanceengineering.materialTin oxideCatalysischemistry.chemical_compoundChemical engineeringchemistryMaterials ChemistryengineeringHigh-resolution transmission electron microscopyChemistry of Materials
researchProduct

Deposition Kinetics and Compositional Control of Vacuum-Processed CH3NH3PbI3 Perovskite

2020

Halide perovskites have generated considerable research interest due to their excellent optoelectronic properties in the past decade. To ensure the formation of high-quality semiconductors, the deposition process for the perovskite film is a critical issue. Vacuum-based processing is considered to be a promising method, allowing, in principle, for uniform deposition on a large area. One of the benefits of vacuum processing is the control over the film composition through the use of quartz crystal microbalances (QCMs) that monitor the rates of the components in situ. In metal halide perovskites, however, one frequently employed component or precursor, CH3NH3I, exhibits nonstandard sublimatio…

Materials sciencebusiness.industryHalide02 engineering and technologyQuartz crystal microbalance010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAdsorptionSemiconductorSemiconductorsChemical engineeringGeneral Materials ScienceSublimation (phase transition)Physical and Theoretical Chemistry0210 nano-technologybusinessMaterialsQuartzStoichiometryPerovskite (structure)The Journal of Physical Chemistry Letters
researchProduct

Biochemical Applications of Solid Supported Membranes on Gold Surfaces: Quartz Crystal Microbalance and Impedance Analysis

2004

MembraneChemistryNanotechnologyGeneral MedicineQuartz crystal microbalanceElectrical impedanceChemInform
researchProduct

Cell motility probed by noise analysis of thickness shear mode resonators.

2006

The quartz crystal microbalance (QCM) technique is an emerging bioanalytical tool to study the behavior of animal cells in vitro. Due to the high interfacial sensitivity of thickness shear mode (TSM) resonators it is possible to monitor the formation and breakage of cell-matrix interactions and changes in viscoelasticity of the cell bodies, as well as minute cell volume alterations by the time course of their resonance frequency even with millisecond time resolution. We found that mammalian MDCK-II cells grown on TSM resonators impose characteristic fluctuations on the resonance frequency, which are a quantitative indicator for dynamic activities of the cells on the surface and report on th…

MillisecondOsmotic shockChemistryAnalytical chemistryQuartz crystal microbalanceNoise (electronics)ViscoelasticityAnalytical ChemistryCell LineResonatorchemistry.chemical_compoundDogsCell MovementBiophysicsAnimalsCytochalasinNoiseElectrical impedanceAnalytical chemistry
researchProduct

Elucidation of Carbohydrate Molecular Interaction Mechanism of Recombinant and Native ArtinM

2013

[EN] The quartz crystal microbalance (QCM) technique has been applied for monitoring the biorecognition of ArtinM lectins at low horseradish peroxidase glycoprotein (HRP) concentrations, using a simple kinetic model based on Langmuir isotherm in previous work.(18) The latter approach was consistent with the data at dilute conditions but it fails to explain the small differences existing in the jArtinM and rArtinM due to ligand binding concentration limit. Here we extend this analysis to differentiate sugar-binding event of recombinant (rArtinM) and native (jArtinM) ArtinM lectins beyond dilute conditions. Equivalently, functionalized quartz crystal microbalance with dissipation monitoring (…

Models MolecularPROTEIN ADSORPTIONSURFACEKM+Horseradish peroxidaselaw.inventionsymbols.namesakelawQUARTZ-CRYSTAL MICROBALANCEBINDINGQUIMICA ANALITICAMaterials ChemistryPhysical and Theoretical ChemistrySPECIFICITYGlycoproteinsBinding SitesChromatographybiologyChemistryLectinLangmuir adsorption modelQuartz crystal microbalanceQuartz Crystal Microbalance TechniquesLECTINRecombinant ProteinsSurfaces Coatings and FilmsMannose-Binding LectinsSolvation shellHYDRATION-SHELLQuartz Crystal Microbalance TechniquesBiophysicsbiology.proteinRecombinant DNAsymbolsPlant LectinsBIOMOLECULAR ADSORPTIONARTOCARPINProtein adsorption
researchProduct

Formation of irreversibly bound annexin A1 protein domains on POPC/POPS solid supported membranes

2008

AbstractThe specific interaction of annexin A1 with phospholipid bilayers is scrutinized by means of scanning force and fluorescence microscopy, quartz crystal microbalance, ellipsometry, and modeled by dynamic Monte Carlo simulations. It was found that POPC/POPS bilayers exhibit phase separation in POPC- and POPS-enriched domains as a function of Ca2+ concentration. Annexin A1 interacts with POPC/POPS bilayers by forming irreversibly bound protein domains with monolayer thickness on POPS-enriched nanodomains, while the attachment of proteins to the POPC-enriched regions is fully reversible. A thorough kinetic analysis of the process reveals that both, the binding constant of annexin A1 at …

Models Moleculargenetic structuresLipid BilayersBiophysicsPhospholipidAnalytical chemistryPhosphatidylserines02 engineering and technologyMicroscopy Atomic ForceBiochemistryBiophysical PhenomenaMembrane Lipids03 medical and health scienceschemistry.chemical_compoundProtein structureSFMMonolayerMicropatterned membranesAnimalsHumansPOPCMonte Carlo simulationAnnexin A1030304 developmental biologyFluorescence microscopy0303 health sciencesEllipsometrytechnology industry and agricultureCell BiologyQuartz crystal microbalanceSurface Plasmon Resonance021001 nanoscience & nanotechnologyBinding constantProtein Structure TertiaryMembraneMicroscopy FluorescencechemistryQCMPhosphatidylcholinesBiophysicsCalciumlipids (amino acids peptides and proteins)Adsorption0210 nano-technologyMonte Carlo MethodProtein BindingAnnexin A1Biochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Quartz Crystal Microbalance And Electrical Impedance Characterization Of Nickel Dissolution Process.

2005

Abstract. The anodic nickel dissolution in acid media is analysed by means of EQCM and EIS techniques. The experimental impedance spectra have been fitted to the equivalent circuit which corresponds to two consecutive electron transfers followed by a Ni(II) desorption. That way rate constants and surface concentrations of the Ni(0) and Ni(I) species are obtained. EQCM also provides information about the mechanism of deposition and passivation of nickel as well as the hydrogen evolution.

NickelMaterials scienceReaction rate constantchemistryPassivationDesorptionInorganic chemistryAnalytical chemistrychemistry.chemical_elementQuartz crystal microbalanceDissolutionDeposition (law)Anode
researchProduct

Growth of passive layers on nickel during their voltammetric anodic dissolution in a weakly acid medium

2006

Abstract Quartz crystal microbalance in combination with voltammetry has been used for studying the electrochemical oxidation behaviour of a nickel deposit in a weakly acid medium. The instantaneous mass/charge ratio (Fdm/dQ) analysis allows to obtain the fraction of charge consumed in the passivation process, and, that way, the experimental kinetic equation of the passive layer growth. This experimental law has been fitted to the theoretical equation derived from the point defect model theory under voltammetric conditions.

PassivationChemistryGeneral Chemical EngineeringInorganic chemistryAnalytical chemistrychemistry.chemical_elementCharge (physics)Quartz crystal microbalanceElectrochemistryNickelElectrochemistryAnodic dissolutionLayer (electronics)VoltammetryElectrochimica Acta
researchProduct