Search results for "microdomains"
showing 10 items of 65 documents
Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: A comparative study with DAG-containing docosahexaenoic acid
2006
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2…
Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore.
2006
High susceptibility of rabbit erythrocytes toward the pore-forming action of staphylococcal alpha-toxin correlates with the presence of saturable, high affinity binding sites. All efforts to identify a protein or glycolipid receptor have failed, and the fact that liposomes composed solely of phosphatidylcholine are efficiently permeabilized adds to the enigma. A novel concept is advanced here to explain the puzzle. We propose that low affinity binding moieties can assume the role of high affinity binding sites due to their spatial arrangement in the membrane. Evidence is presented that phosphocholine head groups of sphingomyelin, clustered in sphingomyelin-cholesterol microdomains, serve th…
Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway
2016
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor …
Antidepressants and Antipsychotic Drugs Colocalize with 5-HT(3) Receptors in Raft-Like Domains
2005
Despite different chemical structure and pharmacodynamic signaling pathways, a variety of antidepressants and antipsychotics inhibit ion fluxes through 5-HT3receptors in a noncompetitive manner with the exception of the known competitive antagonists mirtazapine and clozapine. To further investigate the mechanisms underlying the noncompetitive inhibition of the serotonin-evoked cation current, we quantified the concentrations of different types of antidepressants and antipsychotics in fractions of sucrose flotation gradients isolated from HEK293 (human embryonic kidney 293) cells stably transfected with the 5-HT3Areceptor and of N1E-115 neuroblastoma cells in relation to the localization of …
2018
Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway…
Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK.
2009
Overexpression or clustering of the transmembrane form of the extracellular matrix heparan sulfate proteoglycan agrin (TM-agrin) induces the formation of highly dynamic filopodia-like processes on axons and dendrites from central and peripheral nervous system-derived neurons. Here we show that the formation of these processes is paralleled by a partitioning of TM-agrin into lipid rafts, that lipid rafts and transmembrane-agrin colocalize on the processes, that extraction of lipid rafts with methyl-β-cyclodextrin leads to a dose-dependent reduction of process formation, that inhibition of lipid raft synthesis prevents process formation, and that the continuous presence of lipid rafts is requ…
Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2.
2006
International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the…
S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells.
2011
International audience; BACKGROUND & AIMS: Fas belongs to the family of tumor necrosis factor receptors which induce apoptosis. Many cancer cells express Fas but do not undergo Fas-mediated apoptosis. Nitric oxide reverses this resistance by increasing levels of Fas at the plasma membrane. We studied the mechanisms by which NO affects Fas function. METHODS: Colon and mammary cancer cell lines were incubated with the NO donor glyceryl trinitrate or lipid A; S-nitrosylation of Fas was monitored using the biotin switch assay. Fas constructs that contained mutations at cysteine residues that prevent S-nitrosylation were used to investigate the involvement of S-nitrosylation in Fas-mediated cell…
Partitioning of Pyrene-Labeled Phospho- and Sphingolipids between Ordered and Disordered Bilayer Domains
2004
AbstractHere we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenchi…
Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke
2007
Glutamate transport is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. Among glutamate transporters, EAAT2 is responsible for up to 90% of all glutamate transport and has been reported to be associated to lipid rafts. In this context, we have recently shown that CDP-choline induces EAAT2 translocation to the membrane. Since CDP-choline preserves membrane stability by recovering levels of sphingomyelin, a glycosphingolipid present in lipid rafts, we have decided to investigate whether CDP-choline increases association of EAAT2 transporter to lipid rafts. Flotillin-1 was used as a marker of lipid rafts due to its known association to these m…