Search results for "microdomains"

showing 5 items of 65 documents

2018

Tetraspanins (Tspans) are a family of four-span transmembrane proteins, known as plasma membrane “master organizers.” They form Tspan-enriched microdomains (TEMs or TERMs) through lateral association with one another and other membrane proteins. If multiple microdomains associate with each other, larger platforms can form. For infection, viruses interact with multiple cell surface components, including receptors, activating proteases, and signaling molecules. It appears that Tspans, such as CD151, CD82, CD81, CD63, CD9, Tspan9, and Tspan7, coordinate these associations by concentrating the interacting partners into Tspan platforms. In addition to mediating viral attachment and entry, these …

lcsh:Immunologic diseases. Allergy0301 basic medicineCell signalingTetraspaninsMini ReviewreceptorImmunology610 MedizinbuddingvirusBiologyVirusStructure-Activity Relationship03 medical and health sciencesMembrane MicrodomainsTetraspanintrafficking610 Medical sciencesAnimalsHumansendocytosisImmunology and Allergy030102 biochemistry & molecular biologymicrodomainLipid microdomainMembrane ProteinsVirus InternalizationTransmembrane proteinCell biologytetraspanin030104 developmental biologyMembrane proteinViral replicationVirus DiseasesHost-Pathogen Interactionsentrylcsh:RC581-607BiomarkersCD81Frontiers in Immunology
researchProduct

Role of RNA Motifs in RNA Interaction with Membrane Lipid Rafts: Implications for Therapeutic Applications of Exosomal RNAs

2021

RNA motifs may promote interactions with exosomes (EXO-motifs) and lipid rafts (RAFT-motifs) that are enriched in exosomal membranes. These interactions can promote selective RNA loading into exosomes. We quantified the affinity between RNA aptamers containing various EXO- and RAFT-motifs and membrane lipid rafts in a liposome model of exosomes by determining the dissociation constants. Analysis of the secondary structure of RNA molecules provided data about the possible location of EXO- and RAFT-motifs within the RNA structure. The affinity of RNAs containing RAFT-motifs (UUGU, UCCC, CUCC, CCCU) and some EXO-motifs (CCCU, UCCU) to rafted liposomes is higher in comparison to aptamers withou…

liposomesFRET spectroscopyQH301-705.5AptamerRNA-binding proteinexosomesRNA motifsArticleCatalysisInorganic ChemistryMembrane LipidsMembrane MicrodomainsmicroRNAHumansRNA aptamersNucleotide MotifsBiology (General)Physical and Theoretical ChemistryNucleic acid structureQD1-999Molecular BiologyLipid raftSpectroscopyChemistryOrganic ChemistryRNAGeneral MedicineAptamers NucleotideNon-coding RNAMicrovesiclesComputer Science ApplicationsCell biologyChemistryNucleic Acid ConformationRNAlipids (amino acids peptides and proteins)International Journal of Molecular Sciences
researchProduct

Binding of RNA Aptamers to Membrane Lipid Rafts: Implications for Exosomal miRNAs Transfer from Cancer to Immune Cells

2020

Intraluminal vesicles (ILVs) are released into the extracellular space as exosomes after the fusion of multivesicular bodies (MVBs) with the plasma membrane. miRNAs are delivered to the raft-like region of MVB by RNA-binding proteins (RBPs). RNA loading into exosomes can be either through direct interaction between RNA and the raft-like region of the MVB membrane, or through interaction between an RBP&ndash

liposomesendocrine systemmacromolecular substancesexosomesArticleCatalysisraftslcsh:ChemistryInorganic ChemistryMembrane LipidsMembrane Microdomainsimmune cellsCell Line TumorNeoplasmsmicroRNAHumansRNA aptamersPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyLipid raftSpectroscopyChemistrySELEXMacrophagesVesicleCell MembraneOrganic ChemistryMultivesicular BodiesRNA-Binding ProteinsRNADendritic CellsGeneral MedicineRaftAptamers NucleotideMicrovesiclesComputer Science ApplicationsCell biologyKiller Cells NaturalMicroRNAslcsh:Biology (General)lcsh:QD1-999Cancer cellmiRNAslipids (amino acids peptides and proteins)Systematic evolution of ligands by exponential enrichmentInternational Journal of Molecular Sciences
researchProduct

Human Papillomavirus Types 16, 18, and 31 Share Similar Endocytic Requirements for Entry

2013

ABSTRACT Human papillomavirus type 18 (HPV18), one of the HPVs with malignant potential, enters cells by an unknown endocytic mechanism. The key cellular requirements for HPV18 endocytosis were tested in comparison to those for HPV16 and -31 endocytoses. HPV18 (like HPV16 and -31) entry was independent of clathrin, caveolin, dynamin, and lipid rafts but required actin polymerization and tetraspanin CD151, and the viruses were routed to the same LAMP-1-positive compartment. Hence, the viruses shared similar cellular requirements for endocytic entry.

virusesImmunologyEndocytic cycleTetraspanin 24EndocytosisMicrobiologyClathrinDynamin IIPolymerizationDynamin IIMembrane MicrodomainsTetraspaninVirologyCaveolinHumansHuman papillomavirus 31Lipid raftDynaminHuman papillomavirus 16Microscopy ConfocalHuman papillomavirus 18biologyvirus diseasesLysosome-Associated Membrane GlycoproteinsVirus InternalizationVirologyActinsEndocytosisVirus-Cell InteractionsCell biologyMicroscopy ElectronMicroscopy FluorescenceInsect Sciencebiology.proteinElectrophoresis Polyacrylamide GelHeLa CellsJournal of Virology
researchProduct

Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs)

2008

BACKGROUND: Infectious entry of human papillomaviruses into their host cells is an important step in the viral life cycle. For cell binding these viruses use proteoglycans as initial attachment sites. Subsequent transfer to a secondary receptor molecule seems to be involved in virus uptake. Depending on the papillomavirus subtype, it has been reported that entry occurs by clathrin- or caveolin-mediated mechanisms. Regarding human papillomavirus type 16 (HPV16), the primary etiologic agent for development of cervical cancer, clathrin-mediated endocytosis was described as infectious entry pathway. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and infection studies we show in contra…

viruseslcsh:MedicinePlatelet Membrane GlycoproteinsTetraspanin 24CaveolaeKidneyEndocytosisClathrinVirusCell LineMembrane MicrodomainsViral life cycleTetraspaninAntigens CDCaveolaeInfectious Diseases/Viral InfectionsCaveolinInfectious Diseases/Sexually Transmitted DiseasesHumanslcsh:ScienceHuman papillomavirus 16MultidisciplinarybiologyTetraspanin 30lcsh:RVirionMembrane Proteinsvirus diseasesCell BiologyVirus InternalizationVirology/Host Invasion and Cell EntryVirologyClathrinEndocytosisCell biologyCell culturebiology.proteinFemalelcsh:QMicrobiology/Cellular Microbiology and PathogenesisHeLa CellsResearch ArticlePLoS ONE
researchProduct