Search results for "microenvironment"

showing 10 items of 369 documents

Microenvironments to study migration and somal translocation in cortical neurons

2018

Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spr…

0301 basic medicineCORTICAL NEURONSGrowth ConesBiophysicsCEREBRAL CORTEXBioengineeringINGENIERÍAS Y TECNOLOGÍASBiologySOMAL TRANSLOCATIONMicrotubulesBiotecnología IndustrialBiomaterials03 medical and health sciences0302 clinical medicineMicrotubuleCell MovementmedicineSomal translocationCell AdhesionAnimalsCell adhesionGrowth coneCerebral CortexNeuronsBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Cortical neuronsActin cytoskeletonMice Inbred C57BLCORTICOGENESISCorticogenesisActin Cytoskeleton030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentNEURONAL MIGRATIONMechanics of MaterialsCerebral cortexCeramics and CompositesNeuroscience030217 neurology & neurosurgery
researchProduct

Time for a “Plan B” in Peritoneal Metastatic Disease

2019

Abstract Peritoneal involvement in cancer is the harbinger of a particularly unfavorable prognosis. The peritoneal cavity microenvironment is skewed toward immunoregulatory conditions promoted by macrophage populations and innate-like B-1 B cells, which provide immune privilege to malignant cell foci. In this issue of Cancer Research, Haro and colleagues demonstrate that triggering innate IgM-mediated B-1a immune responses via pathogen- or danger-associated molecular pattern recognition exerts antitumor effects on peritoneal metastases by inducing classical complement cascade activation. Exploitation of innate B-1 humoral responses and noncellular immunity is a promising strategy to counter…

0301 basic medicineCancer Research03 medical and health sciencesPeritoneal NeoplasmPeritoneal cavity0302 clinical medicineImmune systemImmune privilegeImmunityTumor MicroenvironmentMedicineMacrophagePeritoneal CavityPeritoneal NeoplasmsB-Lymphocyte SubsetTumor microenvironmentbusiness.industryCancermedicine.diseaseImmunity Innate030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer researchbusinessHumanCancer Research
researchProduct

Relevance of 3d culture systems to study osteosarcoma environment

2018

Abstract Osteosarcoma (OS) is the most common primary malignant tumor of bone, which preferentially develops lung metastasis. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for patients with metastatic or recurrent OS remains dramatically poor. Novel therapies are therefore required to slow progression and eradicate the disease. Furthermore, to better understand the cellular and molecular mechanisms responsible for OS onset and progression, the development of novel predictive culture systems resembling the native three-dimensional (3D) tumor microenvironment are mandatory. ‘Tumor engineering’ approaches radically changed t…

0301 basic medicineCancer Research3D cell culture system; Osteosarcoma; Scaffolds; SpheroidsLung metastasisCell Culture TechniquesBone NeoplasmsReviewDiseaselcsh:RC254-282Scaffold03 medical and health sciences3D cell culture0302 clinical medicineSettore BIO/13 - Biologia ApplicataSlow progressionSpheroids CellularTumor MicroenvironmentmedicineAnimalsHumans3D cell culture systemScaffoldsOsteosarcomaTumor microenvironmentTissue Scaffoldsbusiness.industrylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.disease3. Good healthClinical Practice030104 developmental biologyOncologyCell culture030220 oncology & carcinogenesisCancer researchOsteosarcomaSpheroidsbusinessJournal of Experimental & Clinical Cancer Research
researchProduct

Extracellular vesicles as miRNA nano-shuttles : dual role in tumor progression

2018

[EN] Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic pote…

0301 basic medicineCancer ResearchAngiogenic SwitchLung-CancerBIOLOGIA CELULARMessenger-RNAsSuppressor-CellsDendritic cellsMetastasisLiquid biopsies03 medical and health sciencesExtracellular VesiclesImmune systemSettore BIO/13 - Biologia ApplicatamicroRNAMedicineHumansNanotechnologyPharmacology (medical)miRNAMyelogenous Leukemia-CellsExtracellular vesicles; miRNA; cancer cellsTumor microenvironmentExosome-Mediated transferbusiness.industryCancerProteinsmedicine.diseaseMicrornasMicroRNAs030104 developmental biologyOncologyTumor progressionCancer cellcancer cellsCancer researchDisease ProgressionHuman medicineExtracellular vesiclebusinessMicrovesiclesTargeted oncology
researchProduct

Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance

2019

Cancer-derived extracellular vesicles (EVs) have been detected in the bloodstream and other biofluids of cancer patients. They carry various tumor-derived molecules such as mutated DNA and RNA fragments, oncoproteins as well as miRNA and protein signatures associated with various phenotypes. The molecular cargo of EVs partially reflects the intracellular status of their cellular origin, however various sorting mechanisms lead to the enrichment or depletion of EVs in specific nucleic acids, proteins or lipids. It is becoming increasingly clear that cancer-derived EVs act in a paracrine and systemic manner to promote cancer progression by transferring aggressive phenotypic traits and drug-res…

0301 basic medicineCancer ResearchBiologyExtracellular Vesicles03 medical and health sciencesParacrine signalling0302 clinical medicineNeoplasmsmicroRNABiomarkers TumormedicineHumansPharmacology (medical)Liquid biopsyPharmacologyTumor microenvironmentLiquid BiopsyCancermedicine.diseasePrecision medicineMicrovesicles030104 developmental biologyInfectious DiseasesOncologyDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer cellDisease ProgressionCancer researchDrug Resistance Updates
researchProduct

IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition

2017

Abstract The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor–positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4Rα antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24− cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4 by inhibiting NF-κB. Enforced expression of DUSP4 drove conversio…

0301 basic medicineCancer ResearchBlotting WesternCA 15-3Breast Neoplasms03 medical and health sciencesParacrine signalling0302 clinical medicineBreast cancerCell Line TumorTumor MicroenvironmentmedicineHumansskin and connective tissue diseasesAutocrine signallingDual-Specificity PhosphataseBlotting Western; Breast Neoplasms; Cell Line Tumor; Disease Progression; Dual-Specificity Phosphatases; Female; Flow Cytometry; Heterografts; Humans; Interleukin-4; Mitogen-Activated Protein Kinase Phosphatases; Tumor Microenvironment; Oncology; Cancer ResearchTumor microenvironmentbiologyCD44CancerFlow Cytometrymedicine.disease030104 developmental biologyOncology030220 oncology & carcinogenesisImmunologyCancer cellDisease Progressionbiology.proteinCancer researchDual-Specificity PhosphatasesHeterograftsMitogen-Activated Protein Kinase PhosphatasesFemaleInterleukin-4HeterograftMitogen-Activated Protein Kinase PhosphataseBreast NeoplasmHumanCancer Research
researchProduct

Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy

2017

The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resis…

0301 basic medicineCancer ResearchCell signalingTumor microenvironmentimmune networkReviewBiologymetabolic cooperationcancer cell metabolismWarburg effectCell biology03 medical and health sciences030104 developmental biologyImmune systemOncologyCancer-Associated Fibroblaststumor microenvironmentmetabolic reprogrammingEpigeneticssense organsWarburg effectTranscription factorReprogrammingcancer-associated fibroblastsFrontiers in Oncology
researchProduct

Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments

2017

The complex interaction between cells undergoing transformation and the various stromal and immunological cell components of the tumor microenvironment (TME) crucially influences cancer progression and diversification, as well as endowing clinical and prognostic significance. The immunosuppression characterizing the TME depends on the recruitment and activation of different cell types including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Less considered is the non-cellular component of the TME. Here, we focus on the extracellular matrix (ECM) regulatory activities that, within the TME, actively contribute to many aspects of tumor progression, acti…

0301 basic medicineCancer ResearchCell typeStromal cellMyeloidCarcinogenesisImmunologyBiology03 medical and health sciencesBone MarrowNeoplasmsmedicineImmune ToleranceImmunology and AllergyAnimalsHumansMyeloid-Derived Suppressor CellCarcinogenesiTumor microenvironmentAnimalMyeloid-Derived Suppressor CellsHematopoietic stem cellSPARCBone marrow nicheExtracellular matrixCell biology030104 developmental biologymedicine.anatomical_structureRegulatory myeloid suppressor cellOncologyTumor microenvironmentTumor progressionMyeloid-derived Suppressor CellBone marrow niche; Extracellular matrix; Regulatory myeloid suppressor cells; SPARC; Tumor microenvironment; Animals; Bone Marrow; Carcinogenesis; Extracellular Matrix; Humans; Immune Tolerance; Myeloid-Derived Suppressor Cells; Neoplasms; Tumor Escape; Tumor MicroenvironmentNeoplasmTumor Escapesense organsBone marrowHuman
researchProduct

The Secreted Protein C10orf118 Is a New Regulator of Hyaluronan Synthesis Involved in Tumour-Stroma Cross-Talk.

2021

Simple Summary Hyaluronan is a main glycosaminoglycan in extracellular matrix with an important role in breast cancer progression. Alterations in its synthesis and size may affect tu-mour growth and metastasis. Communication between stromal and breast cancer cells consists of the secretion of factors that provoke a series of cell signalling that influence cell fate and tis-sue microenvironment, by favouring tumour cell survival and motility. Here, we present the c10orf118 protein expressed in high amounts by breast tumour cells as a new regulator in hya-luronan synthesis. This protein is found both in Golgi and secreted in the extracellular matrix, whereas its role is still unknown. The sec…

0301 basic medicineCancer ResearchChemokineBreast cancer; Estrogen receptor; Golgin104; Hyaluronan; Hyaluronan synthase 2; MCF-7; MDA-MB-231; Tumour microenvironmentMDA-MB-231Estrogen receptorBiologyHyaluronan Synthase 2lcsh:RC254-282ArticlehyaluronanGlycosaminoglycan03 medical and health scienceshyaluronan synthase 2breast cancer0302 clinical medicinemedicineSecretionCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseCell biology030104 developmental biologyOncologyMCF-7030220 oncology & carcinogenesisCancer cellbiology.proteingolgin104MCF-7tumour microenvironmentestrogen receptorCancers
researchProduct

Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival.

2020

Abstract Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascul…

0301 basic medicineCancer ResearchEndotheliumCell SurvivalPopulationCellmedicine.disease_cause03 medical and health sciences0302 clinical medicineImmune systemDownregulation and upregulationTumor MicroenvironmentMedicineAnimalsHumansEndotheliumeducationMelanomaeducation.field_of_studybusiness.industryMelanomaLiver Neoplasmsmedicine.diseaseCarcinoma NeuroendocrineOxidative Stress030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisCancer cellCancer researchbusinessOxidation-ReductionOxidative stressSeminars in cancer biology
researchProduct