Search results for "modification"

showing 10 items of 853 documents

Hsp60 Post-translational Modifications: Functional and Pathological Consequences.

2020

Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The questio…

0301 basic medicinechaperoninnon-canonical functionsReviewMitochondrioncanonical functionsBiochemistry Genetics and Molecular Biology (miscellaneous)Biochemistrychaperonopathies03 medical and health sciences0302 clinical medicineUbiquitinMolecular Bioscienceslcsh:QH301-705.5Molecular Biologybiologycanonical functions chaperonin Hsp60 non-canonical functions post-translation modificationChemistryfungiCitrullinationCell cycleHsp60Cell biology030104 developmental biologylcsh:Biology (General)Mitochondrial permeability transition pore030220 oncology & carcinogenesisChaperone (protein)biology.proteinPhosphorylationHSP60post-translation modificationFrontiers in molecular biosciences
researchProduct

High-Throughput Mapping of 2′-O-Me Residues in RNA Using Next-Generation Sequencing (Illumina RiboMethSeq Protocol)

2017

Detection of RNA modifications in native RNAs is a tedious and laborious task, since the global level of these residues is low and most of the suitable physico-chemical methods require purification of the RNA of interest almost to homogeneity. To overcome these limitations, methods based on RT-driven primer extension have been developed and successfully used, sometimes in combination with a specific chemical treatment. Nowadays, some of these approaches have been coupled to high-throughput sequencing technologies, allowing the access to transcriptome-wide data. RNA 2'-O-methylation is one of the ubiquitous nucleotide modifications found in many RNA types from bacteria, archaea, and eukarya.…

0301 basic medicinechemistry.chemical_classificationbiologyComputer science2'-O-methylationRNAComputational biology010402 general chemistrybiology.organism_classification01 natural sciencesPrimer extensionDNA sequencing0104 chemical sciences03 medical and health sciences030104 developmental biologychemistryRNA modificationDECIPHERNucleotideLigationProtocol (object-oriented programming)Throughput (business)Illumina dye sequencingBacteriaArchaea
researchProduct

Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies

2019

New analytics of post-transcriptional RNA modifications have paved the way for a tremendous upswing of the biological and biomedical research in this field. This especially applies to methods that included RNA-Seq techniques, and which typically result in what is termed global scale modification mapping. In this process, positions inside a cell`s transcriptome are receiving a status of potential modification sites (so called modification calling), typically based on a score of some kind that issues from the particular method applied. The resulting data are thought to represent information that goes beyond what is contained in typical transcriptome data, and hence the field has taken to use …

0301 basic medicinelcsh:QH426-470Computer scienceProcess (engineering)Emerging technologieschemical treatmentNext Generation Sequencingengineered Reverse Transcriptase enzymesRNA-SeqReviewcomputer.software_genreDeep sequencingField (computer science)deep sequencing03 medical and health sciences0302 clinical medicineepitranscriptome[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsAnimalsHumansRNA-SeqRNA Processing Post-TranscriptionalComputingMilieux_MISCELLANEOUSGenetics (clinical)Sequence Analysis RNAbusiness.industryScale (chemistry)High-Throughput Nucleotide Sequencing[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyRNA modificationTerm (time)lcsh:Genetics030104 developmental biologyAnalyticsRNAData miningbusinesscomputer030217 neurology & neurosurgeryGenes
researchProduct

Manganese Ions Individually Alter the Reverse Transcription Signature of Modified Ribonucleosides

2020

Reverse transcription of RNA templates containing modified ribonucleosides transfers modification-related information as misincorporations, arrest or nucleotide skipping events to the newly synthesized cDNA strand. The frequency and proportion of these events, merged from all sequenced cDNAs, yield a so-called RT signature, characteristic for the respective RNA modification and reverse transcriptase (RT). While known for DNA polymerases in so-called error-prone PCR, testing of four different RTs by replacing Mg2+ with Mn2+ in reaction buffer revealed the immense influence of manganese chloride on derived RT signatures, with arrest rates on m1A positions dropping from 82% down to 24%. Additi…

0301 basic medicinelcsh:QH426-470DNA polymerasechemistry.chemical_elementManganeseSaccharomyces cerevisiaeRT signature[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology01 natural sciencesArticle03 medical and health sciencesm1ARNA modificationsComplementary DNA[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsNucleotidem<sup>1</sup>ABase PairingGenetics (clinical)PolymeraseComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationIonsManganesebiology010405 organic chemistryRNARNA-Directed DNA Polymerase[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyreverse transcriptionMolecular biologyReverse transcriptase0104 chemical scienceslcsh:Genetics030104 developmental biologyTemplatechemistrybiology.proteinRNA[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Ribonucleosidesmanganese chloride
researchProduct

Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures

2019

Modification mapping from cDNA data has become a tremendously important approach in epitranscriptomics. So-called reverse transcription signatures in cDNA contain information on the position and nature of their causative RNA modifications. Data mining of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing in importance, and the field is still lacking effective tools. Here we present a versatile user-friendly graphical workflow system for modification calling based on machine learning. The workflow commences with a principal module for trimming, mapping, and postprocessing. The latter includes a quantification of mismatch and arrest rates with single-nucleotide re…

0301 basic medicinelcsh:QH426-470Downstream (software development)Computer scienceRT signatureMachine learningcomputer.software_genre[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyField (computer science)m1A03 medical and health sciencesRNA modifications0302 clinical medicineEpitranscriptomics[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsTechnology and CodeGalaxy platformGenetics (clinical)ComputingMilieux_MISCELLANEOUSbusiness.industryPrincipal (computer security)[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAutomationWatson–Crick faceVisualizationlcsh:Geneticsmachine learningComputingMethodologies_PATTERNRECOGNITION030104 developmental biologyWorkflow030220 oncology & carcinogenesisMolecular Medicine[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]TrimmingArtificial intelligencebusinesscomputer
researchProduct

RNA Modifications Modulate Activation of Innate Toll-Like Receptors

2019

Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have …

0301 basic medicinelcsh:QH426-470EndosomeContext (language use)ReviewBiology03 medical and health sciences0302 clinical medicineRNA modificationsGeneticsAnimalsHumansGenetics(clinical)RNA Processing Post-TranscriptionalReceptorGeneinnate immunityGenetics (clinical)Innate immune systemRNATLR7Immunity InnateCell biologyToll-like receptorslcsh:Genetics030104 developmental biologyTransfer RNAmethylation030215 immunologyGenes
researchProduct

Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis

2019

Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accept…

0301 basic medicinelcsh:QH426-470InflammationReviewmedicine.disease_causeAutoimmunityPathogenesis03 medical and health sciences0302 clinical medicineImmune systemImmunitymicroRNAGeneticsmedicineautoimmune diseasesEpigeneticsepigenetic pathwaysGenetics (clinical)DNA methylationepigeneticshistone modificationsbusiness.industrylcsh:Genetics030104 developmental biology030220 oncology & carcinogenesismiRNAsDNA methylationImmunologyrheumatic diseasesMolecular Medicinemedicine.symptombusinessFrontiers in Genetics
researchProduct

Environmental epigenetics in zebrafish

2017

Abstract It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individual organisms can also enforce epigenetic variations in offspring that had never experienced it directly, which is termed transgenerational inheritance. To date, research in the environmental epigenetics discipline has used a wide range of both model and non-model organisms to elucidate the various epigenetic mechanisms underlying the adaptive response to environmental stimuli. In this rev…

0301 basic medicinelcsh:QH426-470Settore BIO/11 - Biologia MolecolareReviewEnvironmentEpigenesis GeneticEmbryogenesi03 medical and health sciences0302 clinical medicineEnvironmental epigeneticEnvironmental epigeneticsGeneticsAnimalsEpigeneticsToxicantZebrafishMolecular BiologyOrganismZebrafishDNA methylation; Embryogenesis; Environmental epigenetics; Histone modifications; Methylome; Toxicant; Transgenerational inheritance; Zebrafish; Molecular Biology; GeneticsGeneticsDNA methylationbiologyHistone modificationsInheritance (genetic algorithm)Adaptive responseEpigenomebiology.organism_classificationHuman geneticsHistone Codelcsh:Genetics030104 developmental biologyEvolutionary biologyDNA methylationEmbryogenesisMethylomeHistone modification030217 neurology & neurosurgeryTransgenerational inheritanceEpigenetics & Chromatin
researchProduct

Non-Redundant tRNA Reference Sequences for Deep Sequencing Analysis of tRNA Abundance and Epitranscriptomic RNA Modifications

2021

Analysis of RNA by deep-sequencing approaches has found widespread application in modern biology. In addition to measurements of RNA abundance under various physiological conditions, such techniques are now widely used for mapping and quantification of RNA modifications. Transfer RNA (tRNA) molecules are among the frequent targets of such investigation, since they contain multiple modified residues. However, the major challenge in tRNA examination is related to a large number of duplicated and point-mutated genes encoding those RNA molecules. Moreover, the existence of multiple isoacceptors/isodecoders complicates both the analysis and read mapping. Existing databases for tRNA sequencing pr…

0301 basic medicinelcsh:QH426-470ved/biology.organism_classification_rank.speciesComputational biologyBiology01 natural sciencesArticleDeep sequencingdeep sequencing03 medical and health sciencesRNA modificationsRNA Transferepitranscriptome[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Escherichia coliGeneticsModel organismtRNAGeneComputingMilieux_MISCELLANEOUSGenetics (clinical)Sequence Analysis RNA010405 organic chemistryved/biologyreference sequenceHigh-Throughput Nucleotide SequencingRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyquantification0104 chemical scienceslcsh:GeneticsRNA Bacterial030104 developmental biologyTransfer RNADatabases Nucleic AcidtRNA poolBacillus subtilisReference genomeGenes
researchProduct

The consumption of snacks and soft drinks between meals may contribute to the development and to persistence of gastro-esophageal reflux disease

2019

Abstract The hypothesis The habit of snacking and drinking soft beverages between breakfast, lunch and dinner, which is very widespread in the western world, could be a primum movens, thereby contributing to the development and subsequent persistence of gastroesophageal reflux disease (GERD). What does the proposed hypothesis based on? The high prevalence of GERD suggests that it is very probably caused by factors, which are intrinsic and widespread in a western lifestyle. Ingesting snacks or imbibing soft drinks between breakfast, lunch and dinner causes additional gastric acid secretion, acid pocket formation, and additional transient lower esophageal sphincter relaxations (TLESRs) with a…

0301 basic medicinemedicine.medical_specialtyCarbonated BeveragesOverweightGastroenterologyEsophageal Sphincter LowerGastric AcidHiatal hernia03 medical and health sciencesEsophagus0302 clinical medicineRisk FactorsInternal medicinePrevalencemedicineHumansObesityEsophagusLife StyleGastro-esophageal Reflux GERD Lifestyle modifications Transient Lower Esophageal Sphincter Relaxation TLESR Snacking and Soft drinks consumption Hiatal Hernia Overweight ObesitySnackingbusiness.industrydigestive oral and skin physiologyRefluxfood and beveragesFeeding BehaviorGeneral MedicineModels TheoreticalOverweightmedicine.diseaseObesitydigestive system diseasesDietHernia Hiatal030104 developmental biologymedicine.anatomical_structureGastroesophageal RefluxGERDGastric acidSnacksmedicine.symptombusiness030217 neurology & neurosurgery
researchProduct