Search results for "module"

showing 10 items of 226 documents

Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip

2021

Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…

Nuclear and High Energy PhysicsWire bondingParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsHardware_PERFORMANCEANDRELIABILITY01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineModule0103 physical sciencesHardware_INTEGRATEDCIRCUITSWafer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Silicon pixel detectorsInstrumentationPhysicsInterconnectionPixel010308 nuclear & particles physicsbusiness.industryChipInterconnectionCMOSMonolithic pixel detectorsMALTAOptoelectronicsWafer dicingUltrasonic sensorbusinessHL-LHC
researchProduct

Experimental Assessment of a Flat Sandwich-Like Self-Powered Detector for Nuclear Measurements in ITER Test Blanket Modules

2018

Neutron and gamma flux measurements in designated positions in the test blanket modules (TBMs) of ITER will be important tasks during its campaigns. Investigations on self-powered detectors (SPDs), a class of reactor flux monitors are undertaken in the framework of an ongoing project on development of nuclear instrumentation for European ITER TBMs. This paper reports the findings of experiments performed with an SPD in flat sandwich-like geometry. A detector with vanadium emitter is chosen for preliminary studies. Its irradiation in a thermal neutron field gives a proof of the principle of flat SPDs. It is further irradiated in the mixed neutron-gamma field of a 14-MeV neutron generator and…

Nuclear and High Energy Physicsneutron fluxMaterials sciencegamma flux monitors020209 energyInstrumentationNuclear engineeringAstrophysics::High Energy Astrophysical Phenomenafusion reactors02 engineering and technologyBlanketInductor01 natural sciencesneutron detectionNeutron generatorreactor instrumentationfusion reactors;reactor instrumentation;neutron detection;Flux monitoring;gamma-ray detection0103 physical sciences0202 electrical engineering electronic engineering information engineeringNeutrongamma-ray detectionElectrical and Electronic EngineeringNuclear ExperimentCommon emitter010302 applied physicsDetectorelf-powered detectorsNeutron temperatureNuclear Energy and EngineeringFlux monitoringtest blanket modulesfusion reactorPhysics::Accelerator Physics
researchProduct

CQ *-algebras of measurable operators

2022

Abstract We study, from a quite general point of view, a CQ*-algebra (X, 𝖀0) possessing a sufficient family of bounded positive tracial sesquilinear forms. Non-commutative L 2-spaces are shown to constitute examples of a class of CQ*-algebras and any abstract CQ*-algebra (X, 𝖀0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a direct sum of non-commutative L 2-spaces.

Numerical AnalysisControl and OptimizationBanach C*-modules Non commutative integration Partial algebras of operators.Settore MAT/05 - Analisi MatematicaApplied MathematicsAnalysisMoroccan Journal of Pure and Applied Analysis
researchProduct

Increasing efficiency of photovoltaic systems under non-homogeneous solar irradiation using improved Dynamic Programming methods

2017

Abstract The paper presents a complete technique, based on the combination of algorithms, devoted to minimize losses and increase efficiency of Total Cross Tied (TCT) connected photovoltaic (PV) systems under non-homogeneous solar irradiation, based on irradiance equalization criterion. Irradiance equalization is achieved by changing the connections of the solar panels adaptively by a dynamic switching matrix so that total solar radiation on parallel circuits is the most equalized. In this paper, the authors introduce two algorithms. The first one is SmartChoice (SC) algorithm, which is combined with Dynamic Programming (DP) in order to create a hybrid method and obtain better results as co…

OptimizationComputer scienceRenewable Energy Sustainability and the Environment020209 energyPhotovoltaic systemEqualization (audio)Irradiance02 engineering and technologyRadiationSeries and parallel circuitsDynamic programmingSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaMatrix (mathematics)Settore ING-IND/31 - ElettrotecnicaMismatchPhotovoltaic moduleReconfiguration0202 electrical engineering electronic engineering information engineeringElectronic engineeringGeneral Materials ScienceIrradiationMaterials Science (all)
researchProduct

A hierarchical architecture for increasing efficiency of large photovoltaic plants under non-homogeneous solar irradiation

2019

Abstract Under non-homogeneous solar irradiation, photovoltaic (PV) panels receive different solar irradiance, resulting in a decrease in efficiency of the PV generation system. There are a few technical options to fix this issue that goes under the name of mismatch. One of these is the reconfiguration of the PV generation system, namely changing the connections of the PV panels from the initial configuration to the optimal one. Such technique has been widely considered for small systems, due to the excessive number of required switches. In this paper, the authors propose a new method for increasing the efficiency of large PV systems under non-homogeneous solar irradiation using Series-Para…

OptimizationFabricationRenewable Energy Sustainability and the EnvironmentComputer science020209 energyPhotovoltaic systemControl reconfigurationTopology (electrical circuits)02 engineering and technology021001 nanoscience & nanotechnologySolar irradianceSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaMatrix (mathematics)Settore ING-IND/31 - ElettrotecnicaMismatchPhotovoltaic moduleReconfiguration0202 electrical engineering electronic engineering information engineeringKey (cryptography)Electronic engineeringGeneral Materials ScienceArchitecture0210 nano-technology
researchProduct

The use of two-diode substitute model in predicting the efficiency of PV conversion in low solar conditions

2017

The article presents theoretical foundations of a two-diode equivalent model of a photovoltaic cell/module (PV), together with calculation procedures. A physical interpretation of individual components of an equivalent model was presented. Its practical application in predicting efficiency of operation of various PV cells and modules in low insulation conditions was demonstrated. The obtained predictions were verified with the actual results of their operation in open space (outdoor). The practical suitability of the “model” in early detection of ageing phenomena, such as, for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the basis o…

PV cells quality assessmentPV modules degradationPV cells degradationPV modules quality assessmentdetermining two-diode equivalent modelphotovoltaic conversionPV conversion sensitivityEcological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S
researchProduct

Application of the reduced I-V Blaesser’s characteristics in predicting PV modules and cells conversion efficiency in medium and high insolation cond…

2017

The article presents theoretical foundations of application of the reduced I-V Blaesser’s characteristics in predicting a photovoltaic cell/module (PV) efficiency, together with calculation procedures. A detailed analysis of the error of this transformation method of characteristics was carried out. Its practical application in predicting efficiency of operation of various PV cells and modules in medium and high insulation conditions was demonstrated. The practical suitability of the presented method in early detection of ageing phenomena, such as, for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the basis of the results of testing …

PV cells/modules degradationPV cells/modules reduced I-U Blaesser’s characteristicsphotovoltaic conversionPV cells/modules quality assessmentEcological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S
researchProduct

Pho85 and PI(4,5)P(2) regulate different lipid metabolic pathways in response to cold

2019

Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade trans…

Phosphatidylinositol 45-DiphosphateSaccharomyces cerevisiae ProteinsMembrane FluiditySphingoid basesAcclimatizationOrm2PhospholipidSaccharomyces cerevisiaePhosphoinositideTriacylglycerideSphingolipidArticle03 medical and health scienceschemistry.chemical_compoundGlycogen Synthase Kinase 3Gene Expression Regulation FungalMembrane fluidityLow temperatureInositolPhosphatidylinositolProtein kinase AMolecular Biology1-IP7030304 developmental biology0303 health sciencesChemistry030302 biochemistry & molecular biologyCell MembraneCell BiologyLipid MetabolismSphingolipidCyclin-Dependent KinasesCell biologyTORC2-Pkh1-Ypk1 signaling moduleCold TemperatureCytosolMetabolic pathwayPhospholipidMetabolic Networks and PathwaysSignal Transduction
researchProduct

Photovoltaic module characteristics from CIGS solar cell modelling

2013

We describe our approach to the task of modelling, both at single cell structure and complete module levels, during the solar cell technology development process. This can give very helpful indications, in terms of global photovoltaic module characteristics, for the assessment of intermediate research results and planning of further experiments. We make reference specifically to the fabrication of thin film CIGS solar cells by means of single-step electrodeposition, a technique which appears fairly easy and low-cost but, at the same time, can lead to quite different structural and electrical properties.

Photonic structuresMaterials sciencebusiness.industryCIGS solar cellPhotovoltaic systemSettore ING-INF/02 - Campi ElettromagneticiHybrid solar cellSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciQuantum dot solar cellSettore ING-INF/01 - ElettronicaCopper indium gallium selenide solar cellsEngineering physicsModellingPolymer solar celllaw.inventionPhotovoltaic thermal hybrid solar collectorSolar energyPhotovoltaic modulelawSolar cellOptoelectronicsSolar simulatorThin-film solar cellbusinessSimulation2013 International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

The ATLAS Inner Detector commissioning and calibration

2010

The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and insitu calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energ…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsAstronomyTracking (particle physics)Modules7. Clean energy01 natural sciencesATLAS; calibrationHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Heavy IonsDetectors and Experimental TechniquesDetectors de radiacióPhysicsLarge Hadron ColliderDetectorSettore FIS/01 - Fisica SperimentaleInstrumentation and Detectors (physics.ins-det)ATLASAstrophysics and CosmologyTransition radiation detectormedicine.anatomical_structureIonization EnergyComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCElementary ParticlesQuantum Field TheoryParticle physicsFOS: Physical sciencesCosmic rayddc:500.2HadronsSilicon Pixel Sensors530OpticsQuantum Field TheoriesAtlas (anatomy)0103 physical sciencesCalibrationmedicineddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Measurement Science and InstrumentationOptoelectronics010306 general physicsString TheoryEngineering (miscellaneous)ReadoutNuclear PhysicsATLAS detectorbusiness.industry010308 nuclear & particles physicsFísicaSemiconductor TrackerTransition radiationExperimental High Energy Physicsbusiness
researchProduct