Search results for "molecular dynamic"
showing 10 items of 1090 documents
Dynamical coexistence in moderately polydisperse hard-sphere glasses
2020
We perform extensive numerical simulations of a paradigmatic model glass former, the hard-sphere fluid with 10% polydispersity. We sample from the ensemble of trajectories with fixed observation time, whereby single trajectories are generated by event-driven molecular dynamics. We show that these trajectories can be characterized in terms of the local structure, and we find a dynamical-structural (active-inactive) phase transition between two dynamical phases: one dominated by liquidlike trajectories with a low degree of local order and one dominated by glassylike trajectories with a high degree of local order. We show that both phases coexist and are separated by a spatiotemporal interface…
Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7
2018
AbstractNitrophorins (NP) 1–7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the ef…
All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome
2018
The spliceosome (SPL) is a majestic macromolecular machinery composed of five small nuclear RNAs and hundreds of proteins. SPL removes noncoding introns from precursor messenger RNAs (pre-mRNAs) and ligates coding exons, giving rise to functional mRNAs. Building on the first SPL structure solved at near–atomic-level resolution, here we elucidate the functional dynamics of the intron lariat spliceosome (ILS) complex through multi-microsecond-long molecular-dynamics simulations of ∼1,000,000 atoms models. The ILS essential dynamics unveils (i) the leading role of the Spp42 protein, which heads the gene maturation by tuning the motions of distinct SPL components, and (ii) the critical particip…
Oxide/water interfaces: how the surface chemistry modifies interfacial water properties
2012
The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, 'ice-like' and 'liquid-like' features in these spectra are interpreted as the result o…
Atomistic modeling of crystal structure of Ca1.67SiHx
2015
The atomic structure of calcium-silicate-hydrate (C-1.67-S-H-x) has been investigated by theoretical methods in order to establish a better insight into its structure. Three models for C-S-H all derived from tobermorite are proposed and a large number of structures were created within each model by making a random distribution of silica oligomers of different size within each structure. These structures were subjected to structural relaxation by geometry optimization and molecular dynamics steps. That resulted in a set of energies within each model. Despite an energy distribution between individual structures within each model, significant energy differences are observed between the three m…
Combined Use of Structure Analysis, Studies of Molecular Association in Solution, and Molecular Modelling to Understand the Different Propensities of…
2021
The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed…
Density functional study of Cu2+-phenylalanine complex under micro-solvation environment
2013
Abstract We present an atomistic study carried out using density functional calculations including structural relaxations and Car–Parrinello Molecular Dynamics (CPMD) simulations, aiming to investigate the structures of phenylalanine-copper (II) ([Phe-Cu] 2+ ) complexes and their micro-solvation processes. The structures of the [Phe-Cu] 2+ complex with up to four water molecules are optimized using the B3LYP/6-311++G** model in gas phase to identify the lowest energy structures at each degree of solvation ( n = 0–4). It is found that the phenylalanine appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n …
Peptide Metal–Organic Frameworks for Enantioselective Separation of Chiral Drugs
2017
We report the ability of a chiral Cu(II) 3D MOF based on the tripeptide Gly-L-His-Gly (GHG) for the enantioselective separation of metamphetamine and ephedrine. Monte Carlo simulations suggest that chiral recognition is linked to preferential binding of one of the enantiomers as result of either stronger or additional H-bonds with the framework that lead to energetically more stable diastereomeric adducts. Solid phase extraction (SPE) of a racemic mixture by using Cu(GHG) as extractive phase permits isolating more than 50% of the (+)-ephedrine enantiomer as target compound in only four minutes. To the best of our knowledge, this represents the first example of a MOF capable of separating ch…
Deciphering the Potential of Pre and Pro-Vitamin D of Mushrooms against Mpro and PLpro Proteases of COVID-19: An In Silico Approach
2022
Vitamin D’s role in combating the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, has been established in unveiling viable inhibitors of COVID-19. The current study investigated the role of pre and pro-vitamin D bioactives from edible mushrooms against Mpro and PLpro proteases of SARS-CoV-2 by computational experiments. The bioactives of mushrooms, specifically ergosterol (provitamin D2), 7-dehydrocholesterol (provitamin-D3), 22,23-dihydroergocalciferol (provitamin-D4), cholecalciferol (vitamin-D3), and ergocalciferol (vitamin D2) were screened against Mpro and PLpro. Molecular docking analyses of the generated bioactive protease complexes unr…
Communication: anion-specific response of mesoscopic organization in ionic liquids upon pressurization
2018
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization. Published by AIP Publishing.