Search results for "molybdeeni"

showing 10 items of 15 documents

Oxygen Atom Transfer Catalysis by Dioxidomolybdenum(VI) Complexes of Pyridyl Aminophenolate Ligands

2021

A series of new cationic dioxidomolybdenum(VI) complexes [MoO2(Ln)]PF6 (2-5) with the tripodal tetradentate pyridyl aminophenolate ligands HL2-HL5 have been synthesized and characterized. Ligands HL2-HL4 carry substituents in the 4-position of the phenolate ring, viz. Cl, Br and NO2, respectively, whereas the ligand HL5, N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N,N-bis(2-pyridylmethyl)amine, is a derivative of 3,5-di-tert-butylsalicylaldehyde. X-ray crystal structures of complexes 2, 3 and 5 reveal that they have a distorted octahedral geometry with the bonding parameters around the metal centres being practically similar. Stoichiometric oxygen atom transfer (OAT) properties of 5 with PPh3 wer…

molybdenumkatalyytittripodal tetradentate ligandepoxidationoxygen atom transferkompleksiyhdisteetmolybdeeni
researchProduct

Amide functionalized aminobisphenolato MoO2 and WO2 complexes: Synthesis, characterization, and alkene epoxidation catalysis

2023

The use of dioxidomolybdenum(vi) and -tungsten(vi) complexes supported by a variety of structurally different tri- and tetradentate aminobisphenolato ligands as pre-catalysts in the epoxidation of alkenes is well established. However, under the widely used standard 1 mol-% catalyst loadings these types of complexes generally show modest activity only. Recently, amide functionalities in the ligand design of various aminomonophenolato MoO2 complexes have been shown to lead to heightened catalytic activity in alkene epoxidation. In this paper we show that similar ligand amide functionalization can lead to significant enhancement in the alkene epoxidation activity of aminobisphenolato MoO2 comp…

Historyhapetusdioxidotungsten(VI)Polymers and PlasticsProcess Chemistry and TechnologyvolframikompleksiyhdisteetIndustrial and Manufacturing Engineeringdioxidomolybdenum(VI)Catalysiskatalyytitalkene epoxidationBusiness and International ManagementalkeenitPhysical and Theoretical Chemistrymolybdeeniaminobisphenolato ligandsMolecular Catalysis
researchProduct

Dioxomolybdenum(VI) complexes of hydrazone phenolate ligands -syntheses and activities in catalytic oxidation reactions

2021

The new cis-dioxomolybdenum(VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3) (H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 = N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide) have been synthesised and characterized via IR, 1H and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The catalytic activities of complexes 2 and 3, and the analogous known complex [MoO2(L1)(H2O)] (1) (H2L1 = N'-(2-hydroxybenzylidene)-4-methylbenzohydrazide) have been evaluated for various oxidation reactions, viz. oxygen atom transfer from dimethyl sulfoxide to triphenylp…

dioxomolybdenum(VI) complexeskatalyytithydrazoneoxidationepoxidationkompleksiyhdisteetschiff basehapetus-pelkistysreaktiomolybdeenisulfoxidation
researchProduct

Single and Double Beta-Decay Q Values among the Triplet 96Zr, 96Nb, and 96Mo

2015

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…

High Energy Physics::Experimentzirkoniumniobiummolybdeenibeta-decay
researchProduct

Deterministic Modification of CVD Grown Monolayer MoS2 with Optical Pulses

2021

| openaire: EC/H2020/820423/EU//S2QUIP | openaire: EC/H2020/834742/EU//ATOP Transition metal dichalcogenide monolayers have demonstrated a number of exquisite optical and electrical properties. Here, the authors report the optical modification of topographical and optical properties of monolayer MoS2 with femtosecond pulses under an inert atmosphere. A formation of three-dimensional structures on monolayer MoS2 with tunable height up to ≈20 nm is demonstrated. In contrast to unmodified monolayer MoS2, these optically modified structures show significantly different optical properties, such as lower photoluminescence intensity and longer fluorescence lifetime. The results suggest a novel way…

kemiallinen kaasufaasipinnoitusMaterials sciencePhotoluminescencegenetic structuresoptical modification02 engineering and technologyoptiset ominaisuudet010402 general chemistry01 natural scienceschemistry.chemical_compoundtopographyrikkiyhdisteetMonolayermolybdenum disulfidefotoluminesenssiMolybdenum disulfideMechanical Engineering021001 nanoscience & nanotechnology2D materialseye diseases0104 chemical sciencesChemical engineeringchemistryMechanics of Materialsphotoluminescencesense organsohutkalvotmolybdeeni0210 nano-technology
researchProduct

Search for periodic modulations of the rate of double-β decay of Mo100 in the NEMO-3 detector

2021

Double-beta decays of 100Mo from the 6.0195-year exposure of a 6.914 kg high-purity sample were recorded by the NEMO-3 experiment that searched for neutrinoless double-beta decays. These ultrarare transitions to 100Ru have a half-life of approximately 7×1018 years and have been used to conduct the first-ever search for periodic variations of this decay mode. The Lomb-Scargle periodogram technique, and its error-weighted extension, were employed to look for periodic modulations of the half-life. Data show no evidence at the 95% confidence level of modulations with amplitude greater than 2.5% in the frequency range of 0.33225yr−1 to 360yr−1. peerReviewed

isotoopitpuoliintumisaikaydinfysiikkamolybdeeni
researchProduct

The Syntheses and Vibrational Spectra of 16 O- and 18 O-Enriched cis -MO2 (M=Mo, W) Complexes

2018

isotopologuestungsten010405 organic chemistrytiheysfunktionaaliteoriachemistry.chemical_elementkompleksiyhdisteetvolframiGeneral ChemistryTungsten010402 general chemistryDFT01 natural sciences0104 chemical sciencesmolybdenumchemistryMolybdenumPhysical chemistryIsotopologuevibrational spectramolybdeenita116Vibrational spectraChemistrySelect
researchProduct

The Syntheses and Vibrational Spectra of 16O- and 18O-Enriched cis-MO2 (M=Mo, W) Complexes

2018

In this contribution, we report convenient synthetic approaches for obtaining 16O/18O‐enriched dioxidometalVI complexes, MO2(L) (W, Mo), with a linear, tetradentate amine phenolate ligand N,N′‐dimethyl‐N,N′‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)ethylenediamine (H2L) and describe their characterization by IR and Raman spectroscopy complemented by DFT computational analysis. The isotopologues of WO2(L) were made of tungstenVI trisglycolate W(eg)3 (eg=1,2‐ethanediolate dianion) and ligand H2L in the presence of either H2[16O] or H2[18O], whereas Mo16O2(L) was made using Na2MoO4⋅2H2O which was converted to Mo18O2(L) by oxido substitution using H2[18O]. The complementary IR and Raman analyses show th…

isotopologuestiheysfunktionaaliteoriavolframikompleksiyhdisteetvibrational spectramolybdeeniDFT
researchProduct

Heptacoordinated Molybdenum(VI) Complexes of Phenylenediamine Bis(phenolate): A Stable Molybdenum Amidophenoxide Radical

2013

The syntheses, crystallographic structures, magnetic properties, and theoretical studies of two heptacoordinated molybdenum complexes with N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine (H4N2O2) are reported. A formally molybdenum(VI) complex [Mo(N2O2)Cl2(dmf)] (1) was synthesized by the reaction between [MoO2Cl2(dmf)2] and H4N2O2, whereas the other molybdenum(VI) complex [Mo(N2O2)(HN2O2)] (2) was formed when [MoO2(acac)2] was used as a molybdenum source. Both complexes represent a rare case of the MoVI ion without any multiply bonded terminal ligands. In addition, molecular structures, magnetic measurements, ESR spectroscopy, and density functional theory calculations ind…

Models MolecularMagnetic measurementsFree Radicalssyylliset liganditInorganic chemistryMolecular Conformationchemistry.chemical_elementPhenylenediaminesCrystallography X-RayMolecular conformationIonInorganic ChemistryPhenolsRare casePolymer chemistryOrganometallic CompoundsamidophenoxidePhysical and Theoretical ChemistrySpectroscopyta116Molybdenumradicalta114X-raynon-innocent ligandschemistryMolybdenumradikaalitQuantum TheoryDensity functional theoryamidofenoksidimolybdeeni
researchProduct

Dioxidomolybdenum(VI) and -tungsten(VI) complexes with tripodal amino bisphenolate ligands as epoxidation and oxo-transfer catalysts

2017

The molybdenum(VI) and tungsten(VI) complexes [MO2(L)] (M = Mo (1), W (2), H2L = bis(2-hydroxy-3,5-di-tert-butybenzyl)morpholinylethylamine) were synthesized and the complexes were used to catalyze oxotransfer reactions, viz. sulfoxidation, epoxidation and benzoin oxidation. For comparison, the same reactions were catalyzed using the known complexes [MO2(L′)] (M = Mo (3), W (4), H2L′ = bis(2-hydroxy-3,5-di-tert-butybenzyl)ethanolamine) and [MO2(L″)] (M = Mo (5), W (6), H2L″ = bis(2-hydroxy-3,5-di-tert-butybenzyl)diethyleneglycolamine). The oxo atom transfer activity between DMSO and benzoin at 120 °C was identical for all studied catalysts. Reasonable catalytic activity was observed for sul…

Solid-state chemistrytungstenchemistry.chemical_elementTungsten010402 general chemistry01 natural sciencesMedicinal chemistryepoxysulfoxidationCatalysisInorganic Chemistrychemistry.chemical_compoundEthanolaminemolybdenumBenzoinepoxidationMaterials ChemistryOrganic chemistryoxygen atom transferPhysical and Theoretical Chemistryta116atoms010405 organic chemistryLow activityepoksivolframi0104 chemical sciencesoxotransfer reactionsatomithappichemistryMolybdenummolybdeenioxygenPolyhedron
researchProduct