Search results for "morphogenesis"

showing 10 items of 178 documents

Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the a…

2015

Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of his…

:Phenomena and Processes::Physiological Phenomena::Physiological Processes::Growth and Development::Morphogenesis::Embryonic and Fetal Development::Organogenesis::Neurogenesis [Medical Subject Headings]CB1 receptorTubulina (proteína)Cannabinoid receptorCarbamatosEtanol:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Nuclear Proteins::Histones [Medical Subject Headings]Ventrículos lateralesSacarosaNeuronasSubgranular zone0302 clinical medicine:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB1 [Medical Subject Headings]Histonas:Chemicals and Drugs::Organic Chemicals::Carboxylic Acids::Acids Acyclic::Carbamates [Medical Subject Headings]Receptor cannabinoide CB1Cannabinoid receptor type 2:Organisms::Eukaryota::Animals [Medical Subject Headings]:Phenomena and Processes::Metabolic Phenomena::Metabolism::Phosphorylation [Medical Subject Headings]:Anatomy::Cells::Stem Cells::Neural Stem Cells [Medical Subject Headings]:Anatomy::Nervous System::Neurons [Medical Subject Headings]health care economics and organizations:Anatomy::Nervous System::Central Nervous System::Brain::Cerebral Ventricles::Lateral Ventricles [Medical Subject Headings]Original Research:Chemicals and Drugs::Nucleic Acids Nucleotides and Nucleosides::Nucleosides::Deoxyribonucleosides::Deoxyuridine::Bromodeoxyuridine [Medical Subject Headings]0303 health sciencesAlcoholismoalcoholConsumo de alcoholNeurogenesis:Phenomena and Processes::Genetic Phenomena::Phenotype::Genetic Markers [Medical Subject Headings]:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Cannabinoid Receptor Modulators::Cannabinoid Receptor Agonists [Medical Subject Headings]Benzamidas:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB2 [Medical Subject Headings]Endocannabinoid system3. Good healthbromodesoxiuridinaneurogenesisEndocannabinoidesmedicine.anatomical_structure:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases [Medical Subject Headings]ACEADietaAlcoholFosforilaciónAgonistmedicine.medical_specialtyHidrolasasmedicine.drug_classNeurogenesiseducation:Psychiatry and Psychology::Mental Disorders::Substance-Related Disorders::Alcohol-Related Disorders::Alcoholism [Medical Subject Headings]Subventricular zoneBiology:Phenomena and Processes::Physiological Phenomena::Nutritional Physiological Phenomena::Diet [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Prosencephalon::Telencephalon::Cerebrum::Cerebral Cortex::Hippocampus::Dentate Gyrus [Medical Subject Headings]lcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceRatasInternal medicine:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Nerve Tissue Proteins::Tubulin [Medical Subject Headings]JWH133medicineGiro dentadolcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyCélulas madre nerviosas:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Endocannabinoids [Medical Subject Headings]Dentate gyrusmarcadores genéticosCB2 receptor:Chemicals and Drugs::Carbohydrates::Polysaccharides::Oligosaccharides::Disaccharides::Sucrose [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Prosencephalon::Diencephalon::Hypothalamus [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Alcohols::Ethanol [Medical Subject Headings]Endocrinology:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Rats [Medical Subject Headings]nervous system:Psychiatry and Psychology::Behavior and Behavior Mechanisms::Behavior::Drinking Behavior::Alcohol Drinking [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Amides::Benzamides [Medical Subject Headings]030217 neurology & neurosurgeryHipotálamoNeuroscience
researchProduct

Distribution of a special subset of keratinocytes characterized by the expression of cytokeratin 9 in adult and fetal human epidermis of various body…

1987

Biochemical analyses have previously shown that palmar and plantar epidermis, unlike the epidermis of other body sites, contain cytokeratin 9 (Mr 64,000), an unusually large acidic (type I) cytokeratin. Guinea-pig antibodies that specifically and selectively react with bovine and human cytokeratin 9 were used for the immunocytochemical identification of cytokeratin 9 in adult and fetal human epidermis from various body sites. In the epidermis of palms and soles, antibodies against cytokeratin 9 stained a high proportion of the keratinocytes in suprabasal locations. These suprabasal cytokeratin-9-positive keratinocytes were often arranged in vertical columns and concentrated around intraepid…

AdultCancer Researchmedicine.drug_classMorphogenesisFluorescent Antibody Techniquemacromolecular substancesBiologyMonoclonal antibodyBasal (phylogenetics)CytokeratinFetusmedicineAnimalsHumansMolecular BiologySkinFetusEpidermis (botany)FootCell BiologyAnatomyHandMolecular biologyCytoskeletal Proteinsmedicine.anatomical_structureEpidermal Cellsbiology.proteinKeratinsCattleAntibodyKeratinocyteNeckDevelopmental BiologyDifferentiation; research in biological diversity
researchProduct

Expression of Toll-Like Receptors in the Developing Brain

2012

Toll-like receptors (TLR) are key players of the innate and adaptive immune response in vertebrates. The original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis during development. Making use of real-time PCR, in situ hybridization, and immunohistochemistry we systematically examined the expression of TLR1-9 and the intracellular adaptor molecules MyD88 and TRIF during development of the mouse brain. Expression of TLR7 and TLR9 in the brain was strongly regulated during different embryonic, postnatal, and adult stages. In contrast, expression of TLR1-6, TLR8, MyD88, and TRIF mRNA displayed no significant changes in the different phases of brain develop…

AgingGene Expressionlcsh:MedicineMiceMolecular Cell BiologyMorphogenesislcsh:ScienceReceptorImmune ResponseRegulation of gene expressionMultidisciplinaryNeocortexToll-Like ReceptorsBrainGene Expression Regulation DevelopmentalAcquired immune systemInnate ImmunityCell biologyInfectious Diseasesmedicine.anatomical_structureMedicineResearch ArticleImmunologyCentral nervous systemMorphogenesisIn situ hybridizationBiologyMolecular GeneticsImmune ActivationDevelopmental NeuroscienceGeneticsmedicineAnimalsHumansRNA MessengerBiologyImmunity to Infectionslcsh:RImmunityComputational BiologyImmune DefenseAxonsHEK293 CellsTRIFImmune SystemCellular NeuroscienceImmunologyClinical Immunologylcsh:QTranscriptomeDevelopmental BiologyNeurosciencePLoS ONE
researchProduct

The transmembrane receptor Uncoordinated5 (Unc5) is essential for heart lumen formation in Drosophila melanogaster

2011

AbstractTransport of liquids or gases in biological tubes is fundamental for many physiological processes. Our knowledge on how tubular organs are formed during organogenesis and tissue remodeling has increased dramatically during the last decade. Studies on different animal systems have helped to unravel some of the molecular mechanisms underlying tubulogenesis. Tube architecture varies dramatically in different organs and different species, ranging from tubes formed by several cells constituting the cross section, tubes formed by single cells wrapping an internal luminal space or tubes that are formed within a cell. Some tubes display branching whereas others remain linear without interse…

AngiogenesisLumen (anatomy)Receptors Cell SurfaceOrganogenesisLumen formationBiologyLigandsUnc5AnimalsDrosophila ProteinsDrosophila heart morphogenesisMyocytes CardiacNerve Growth FactorsReceptorMolecular BiologyCardiogenesisTumor Suppressor ProteinsHeartCell BiologyAnatomyNetrin-1Tubulogenesisbiology.organism_classificationTransmembrane proteinCell biologyDrosophila melanogasterNetrinBSignal transductionDrosophila melanogasterNetrin ReceptorsDrosophila ProteinDevelopmental BiologyDevelopmental Biology
researchProduct

Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resist…

2007

In Candida albicans, the ATC1 gene, encoding a cell wall-associated acid trehalase, has been considered as a potentially interesting target in the search for new antifungal compounds. A phenotypic characterization of the double disruptant atc1Delta/atc1Delta mutant showed that it was unable to grow on exogenous trehalose as sole carbon source. Unlike actively growing cells from the parental strain (CAI4), the atc1Delta null mutant displayed higher resistance to environmental insults, such as heat shock (42 degrees C) or saline exposure (0.5 M NaCl), and to both mild and severe oxidative stress (5 and 50 mM H(2)O(2)), which are relevant during in vivo infections. Parallel measurements of int…

Antifungal AgentsHot TemperatureMutantGlutathione reductaseHyphaemedicine.disease_causeMicrobiologyMicrobiologySuperoxide dismutasechemistry.chemical_compoundMiceOsmotic PressureCandida albicansmedicineMorphogenesisAnimalsTrehalaseTrehalaseCandida albicansMicrobial ViabilitybiologyVirulenceSuperoxide DismutaseCandidiasisTrehaloseHydrogen Peroxidemedicine.diseasebiology.organism_classificationCatalaseTrehaloseSurvival AnalysisDisease Models AnimalOxidative StressGlutathione Reductasechemistrybiology.proteinFemaleSystemic candidiasisOxidative stressGene DeletionMicrobiology (Reading, England)
researchProduct

Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans.

2009

The Cwt1 transcription factor is involved in cell wall architecture of the human fungal pathogen Candida albicans. We demonstrate here that deficiency of Cwt1 leads to decreased β1,6-glucan in the cell wall, while mannoproteins are increased in the cell wall of exponentially growing cells and are released into the medium of stationary phase cells. Hyphal morphogenesis of cwt1 mutants is reduced on the surfaces of some inducing media. Unexpectedly, the CWT1/cwt1 heterozygous strains shows some stronger in vitro phenotypes compared to the homozygous mutant. The heterozygous but not the homozygous strain is also strongly impaired for its virulence in a mouse model of systemic infection. We sug…

Antifungal AgentsMutantMorphogenesisGene DosageHyphaeVirulenceBioengineeringApplied Microbiology and BiotechnologyBiochemistryMicrobiologyCell wallFungal ProteinsMiceCell WallDrug Resistance FungalGene Expression Regulation FungalCandida albicansGeneticsMorphogenesisAnimalsHumansCandida albicansDNA FungalTranscription factorOligonucleotide Array Sequence AnalysisMembrane GlycoproteinsbiologyVirulenceHomozygoteCandidiasisbiology.organism_classificationPhenotypeCorpus albicansMutationBiotechnologyTranscription FactorsYeast (Chichester, England)
researchProduct

Pga13 in Candida albicans is localized in the cell wall and influences cell surface properties, morphogenesis and virulence.

2011

The fungal cell wall is an essential organelle required for maintaining cell integrity and also plays an important role in the primary interactions between pathogenic fungi and their hosts. PGA13 encodes a GPI protein in the human pathogen Candida albicans, which is highly up-regulated during cell wall regeneration in protoplasts. The Pga13 protein contains a unique tandem repeat, which is present five times and is characterized by conserved spacing between the four cysteine residues. Furthermore, the mature protein contains 38% serine and threonine residues, and therefore probably is a highly glycosylated cell wall protein. Consistent with this, a chimeric Pga13-V5 protein could be localiz…

Antifungal AgentsSurface PropertiesCellMorphogenesisHyphaeCalcofluor-whiteKidneyMicrobiologyMicrobiologyCell wallFungal ProteinsMiceCell WallStress PhysiologicalOrganelleCandida albicansGeneticsmedicineCell AdhesionAnimalsHumansAmino Acid SequenceCell adhesionCandida albicansOligonucleotide Array Sequence AnalysisSequence DeletionFungal proteinMice Inbred BALB CbiologyVirulenceGene Expression ProfilingProtoplastsCandidiasisFlocculationbiology.organism_classificationCell biologymedicine.anatomical_structureFemaleSequence AlignmentFungal genetics and biology : FGB
researchProduct

Ciliopathies: an Update

2015

Cilia are hair-like organelles that extend from the surface of almost all human cells. Nine doublet microtubule pairs make up the core of each cilium, known as the axoneme. Cilia are classified as motile or immotile; non motile or primary cilia are involved in sensing the extracellular environment. These organelles mediate perception of chemo-, mechano- and osmosensations that are then transmitted into the cell via signaling pathways. They also play a crucial role in cellular functions including planar cell polarity, cell division, proliferation and apoptosis. Because of cilia are located on almost all polarized human cell types, cilia-related disorders, can affect many organs and systems. …

AxonemeCell divisionMicrotubuleMucociliary clearanceCiliumCiliogenesisMorphogenesisBiologyCiliopathiesCell biologyPediatrics Research International Journal
researchProduct

Expression Patterns and Subcellular Localization of Carbonic Anhydrases Are Developmentally Regulated during Tooth Formation

2014

Abstract Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, …

BiomineralizationPathologyPhysiologylcsh:MedicineMiceLääketieteen bioteknologia - Medical biotechnologyMolecular Cell BiologyMorphogenesisMedicine and Health Scienceslcsh:ScienceIn Situ HybridizationCarbonic AnhydrasesRegulation of gene expressionMultidisciplinaryGene Expression Regulation DevelopmentalAnimal ModelsEpithelial cell rests of MalassezImmunohistochemistryCell biologyIsoenzymesProtein Transportmedicine.anatomical_structureOrgan SpecificityOdontogenesisAnatomyCellular Structures and OrganellesAmeloblastResearch ArticleCell Physiologymedicine.medical_specialtyHistologyMesenchymeMouse ModelsIn situ hybridizationBiologyResearch and Analysis MethodsGene Expression Regulation EnzymologicModel Organismsstomatognathic systemNotochordmedicineAnimalsDental papillalcsh:RBiology and Life SciencesCell BiologyMolecular DevelopmentOdontoblastAnimals Newbornlcsh:QLysosomesPhysiological ProcessesToothDevelopmental BiologyPLoS ONE
researchProduct

“BEP” RNAs and Proteins Are Situated in the Animal Side of Sea Urchin Unfertilized Egg, Which Can Be Recognized by Female Pronuclear Localization

1996

Microsurgery experiments demonstrate that the animal side of the unfertilized sea urchin Paracentrotus lividus egg coincides with the side of the egg pronucleus location. It is demonstrated by means of in situ hybridization and immunostaining of whole mounts of animal or vegetal halves that the previously identified bep 1 and bep4 RNAs and their proteins are located in the animal part of the unfertilized egg and much less in the vegetal part. The addition of Fabs against BEP1 and BEP4 causes exogastrulation.

BiophysicsIn situ hybridizationBiochemistryParacentrotus lividusbiology.animalBotanyMorphogenesismedicineAnimalsRNA MessengerMolecular BiologySea urchinOvumCell NucleusbiologyPronucleusMembrane ProteinsRNACell Biologybiology.organism_classificationCell biologyCell nucleusmedicine.anatomical_structureMembrane proteinSea Urchinsembryonic structuresRNAFemaleImmunostainingBiochemical and Biophysical Research Communications
researchProduct