Search results for "motifs"

showing 10 items of 180 documents

Inter- and intraspecific hypervariability in interstitial telomeric-like repeats (TTTAGGG)n in Anacyclus (Asteraceae).

2017

BACKGROUND AND AIMS: Interstitial telomeric repeat (ITR) sites, consisting of tandem repeats of telomeric motifs localized at intrachromosomal sites, have been reported in a few unrelated organisms including plants. However, the causes for the occurrence of ITRs outside of the chromosomal termini are not fully understood. One possible explanation are the chromosomal rearrangements involving telomeric sites, which could also affect the location of other structural genome elements, such as the 45S rDNA. Taking advantage of the high dynamism in 45S rDNA loci previously found in Anacyclus (Asteraceae, Anthemideae), the occurrence and patterns of variation of ITRs were explored in this genus wit…

0106 biological sciences0301 basic medicineDNA PlantKaryotypeChromosomal translocationPlant ScienceAsteraceae01 natural sciencesGenomeDNA Ribosomal03 medical and health sciencesTandem repeatAnthemideaeHomologous chromosomemedicineNucleotide MotifsAnacyclusPolymorphism Geneticbiologymedicine.diagnostic_testChromosomeGenetic VariationOriginal ArticlesTelomerebiology.organism_classification030104 developmental biologyGenetics PopulationEvolutionary biologyGenetic LociRNA RibosomalTandem Repeat Sequences010606 plant biology & botanyFluorescence in situ hybridizationAnnals of botany
researchProduct

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

2016

The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold hig…

0106 biological sciences0301 basic medicineGlycosylationGlycosylationStereochemistryRutinAmino Acid Motifs01 natural sciencesApplied Microbiology and BiotechnologySubstrate Specificity03 medical and health sciencesRutinchemistry.chemical_compoundAmylosucraseGlucosyltransferasesBacterial Proteins010608 biotechnologyDeinococcusBinding siteBinding SitesbiologyGeneral Medicinebiology.organism_classificationAcceptorMolecular Docking SimulationKinetics030104 developmental biologyAglyconechemistryGlucosyltransferasesbiology.proteinDeinococcusBiotechnologyJournal of Microbiology and Biotechnology
researchProduct

SHAPE MATTERS: EFFECT OF POINT MUTATIONS ON RNA SECONDARY STRUCTURE

2013

A suitable model to dive into the properties of genotype-phenotype landscapes is the relationship between RNA sequences and their corresponding minimum free energy secondary structures. Relevant issues related to molecular evolvability and robustness to mutations have been studied in this framework. Here, we analyze the one-mutant neighborhood of the predicted secondary structure of 46 different RNAs, including tRNAs, viroids, larger molecules such as Hepatitis-δ virus, and several random sequences. The probability distribution of the effect of point mutations in linear structural motifs of the secondary structure is well fit by Pareto or Lognormal probability distributions functions, indep…

0106 biological sciencesGenetics0303 health sciencesPoint mutationRNARobustness (evolution)Computational biologyBiology010603 evolutionary biology01 natural sciencesNucleic acid secondary structureEvolvability03 medical and health sciencesControl and Systems EngineeringProbability distributionStructural motifRNA secondary structure sequence-structure map mutational effects linear motifsProtein secondary structure030304 developmental biologyAdvances in Complex Systems
researchProduct

Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobac…

2007

International audience; Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in …

0106 biological sciencesGénomique et Biotechnologie des FruitsPhysiologyTransgenesalicylic acid[SDV]Life Sciences [q-bio]Amino Acid MotifsMolecular Sequence DataWRKY transcription factorPlant ScienceGenetically modified cropsBiology01 natural sciences03 medical and health scienceschemistry.chemical_compoundplant resistance to pathogensGene Expression Regulation PlantComplementary DNABotanyGene expressionTobacco[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVitisCloning MolecularPathogen030304 developmental biologyPlant Proteins2. Zero hungerGeneticschemistry.chemical_classification0303 health sciencesBase SequenceFungifood and beveragesPlants Genetically ModifiedWRKY protein domainImmunity InnateAmino acid[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacychemistrySalicylic acid010606 plant biology & botanyTranscription Factors
researchProduct

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate.

2017

Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated …

0301 basic medicineCell signalingHistologySaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeAmino Acid MotifsSaccharomyces cerevisiaeInteractomeReceptor tyrosine kinaseArticlePathology and Forensic Medicine03 medical and health scienceschemistry.chemical_compoundHumansProtein Interaction MapsPhosphorylationbiologyTyrosine phosphorylationCell BiologyProtein-Tyrosine Kinasesbiology.organism_classificationYeastCell biology030104 developmental biologychemistrybiology.proteinPhosphorylationTyrosine kinaseSequence AlignmentCell systems
researchProduct

Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling.

2018

The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A po…

0301 basic medicineCell signalingImmunologyIntegrinNeovascularization PhysiologicFactor VIIa030204 cardiovascular system & hematologyBiochemistryThromboplastinThrombosis and Hemostasis03 medical and health sciencesTissue factorMice0302 clinical medicineAnimalsHumansReceptor PAR-2Protein Interaction Domains and MotifsProtein Interaction MapsProtein kinase ACells CulturedIntegrin bindingBinding SitesbiologyChemistryIntegrin beta1Cell BiologyHematologyCell biologyCrosstalk (biology)030104 developmental biologyADP-Ribosylation Factor 6biology.proteinNIH 3T3 CellsPhosphorylationSignal transductionProtein BindingSignal TransductionBlood
researchProduct

Identification of an optimized 2′-O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8

2017

Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between “host” and “foreign” RNA. Ribose 2′-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2′-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2′-O-methylated RNA sequence, we performed a systematic permutation of the …

0301 basic medicineCytidineBiologyBioinformaticsMethylationInhibitory Concentration 5003 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferReportRiboseHumansNucleotideNucleotide MotifsMolecular Biologychemistry.chemical_classificationInnate immune systemNucleotides2'-O-methylationRNATLR7TLR8Cell biologyRNA Bacterial030104 developmental biologyToll-Like Receptor 7chemistryToll-Like Receptor 8MutationLeukocytes MononuclearNucleic acidRNA030215 immunologyRNA
researchProduct

Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins.

2020

AbstractPericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that ev…

0301 basic medicineEuchromatinHeterochromatinEvolutionMolecular biologyAdaptation Biologicallcsh:MedicineInsulator (genetics)Chromatin remodelingArticleEvolutionary geneticsEvolution Molecular03 medical and health sciences0302 clinical medicineDrosophilidaeHeterochromatinAnimalsDrosophila ProteinsNucleotide Motifslcsh:ScienceEye ProteinsPromoter Regions GeneticGenePericentric heterochromatinPhylogenyGeneticsMultidisciplinarygeenitBinding Sitesbiologylcsh:RfungiChromosome MappingPromoterDNAbiology.organism_classificationChromatinDNA-Binding Proteins030104 developmental biologyGene Expression RegulationGenetic LociChromatin Immunoprecipitation SequencingMolecular evolutionlcsh:QDrosophilaTranscription Initiation SiteTranscription030217 neurology & neurosurgeryProtein BindingScientific reports
researchProduct

Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus

2016

Background: ChIP-nexus, an extension of the ChIP-exo protocol, can be used to map the borders of protein-bound DNA sequences at nucleotide resolution, requires less input DNA and enables selective PCR duplicate removal using random barcodes. However, the use of random barcodes requires additional preprocessing of the mapping data, which complicates the computational analysis. To date, only a very limited number of software packages are available for the analysis of ChIP-exo data, which have not yet been systematically tested and compared on ChIP-nexus data. Results: Here, we present a comprehensive software package for ChIP-nexus data that exploits the random barcodes for selective removal …

0301 basic medicineFOS: Computer and information sciencesDuplication ratesChromatin ImmunoprecipitationBioinformaticsPipeline (computing)610Biologycomputer.software_genre600 Technik Medizin angewandte Wissenschaften::610 Medizin und Gesundheit03 medical and health sciencesSoftwareChIP-nexusGeneticsPreprocessorNucleotide MotifsLibrary complexityChIP-exoGeneticsProtocol (science)Binding Sitesbusiness.industryfungiComputational BiologyHigh-Throughput Nucleotide SequencingReproducibility of ResultsChipChromatin immunoprecipitationData mappingDNA-Binding ProteinsAlgorithm030104 developmental biologyChIP-exoData miningbusinessPeak callingcomputerAlgorithmsSoftwareProtein BindingTranscription FactorsResearch ArticleBiotechnologyBMC Genomics
researchProduct