Search results for "motor"

showing 10 items of 3137 documents

Hankelet-based action classification for motor intention recognition

2017

Powered lower-limb prostheses require a natural, and an easy-to-use, interface for communicating amputee’s motor intention in order to select the appropriate motor program in any given context, or simply to commute from active (powered) to passive mode of functioning. To be widely accepted, such an interface should not put additional cognitive load at the end-user, it should be reliable and minimally invasive. In this paper we present a one such interface based on a robust method for detecting and recognizing motor actions from a low-cost wearable sensor network mounted on a sound leg providing inertial (accelerometer, gyrometer and magnetometer) data in real-time. We assume that the sensor…

0209 industrial biotechnologyComputer scienceGeneral MathematicsInterface (computing)Context (language use)02 engineering and technologyAction recognitionLTI system theoryMatrix (mathematics)020901 industrial engineering & automationMatch moving0202 electrical engineering electronic engineering information engineeringMathematics (all)Computer visionObservabilitySettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionibusiness.industrySystem identificationComputer Science Applications1707 Computer Vision and Pattern RecognitionAction recognition; Motor intention recognition; Powered (active) lower-limb prostheses; Wearable sensor networks; Control and Systems Engineering; Software; Mathematics (all); Computer Science Applications1707 Computer Vision and Pattern RecognitionMotor intention recognitionComputer Science ApplicationsSupport vector machineControl and Systems EngineeringPowered (active) lower-limb prostheseWearable sensor network020201 artificial intelligence & image processingArtificial intelligencebusinessHankel matrixSoftwareRobotics and Autonomous Systems
researchProduct

Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks

2018

Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is propos…

0209 industrial biotechnologyComputer sciencebusiness.industryPowertrainStatorDeep learningReliability (computer networking)020208 electrical & electronic engineeringControl engineeringHardware_PERFORMANCEANDRELIABILITY02 engineering and technologyFault (power engineering)Convolutional neural networklaw.inventionPower (physics)020901 industrial engineering & automationlaw0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessInduction motor2018 XIII International Conference on Electrical Machines (ICEM)
researchProduct

Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verific…

2020

In this paper, a newly developed controller for active heave compensated offshore cranes is compared with state-of-the-art control methods. The comparison is divided into a numerical part on stability margins as well as operational windows and an experimental validation of the expected performance improvement based on a full-scale testing on site with a crane rated to 250 metric tons. Such a crane represents the typical target for the new control method using a combination of active and passive hydraulic actuation on the main winch. The active hydraulic actuation is a hydrostatic transmission with variable-displacement pumps and variable-displacement motors. The new controller employs feedf…

0209 industrial biotechnologyControl and OptimizationComputer scienceEnergy Engineering and Power Technology02 engineering and technologyActive heave compensationlcsh:Technologyactive heave compensationDisplacement (vector)Compensation (engineering)020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringWinchEngineering (miscellaneous)lcsh:TRenewable Energy Sustainability and the EnvironmentOscillation020208 electrical & electronic engineeringFeed forwardMotor controlVDP::Teknologi: 500winchhydrostatic transmissionPerformance improvementEnergy (miscellaneous)Energies
researchProduct

Robust control for high performance induction motor drives based on partial state-feedback linearization

2019

This paper deals with a robust input-output feedback linearization control technique for induction motors. Indeed, classic feedback linearization presents two main disadvantages: 1) the accuracy of the dynamic model; and 2) the corresponding correct knowledge of the model parameters. To address this issue, the linear controller has been substituted with a suitably controller designed to be robust to the variations of the main parameters of the induction motor, like stator and rotor resistances, and the three-phase magnetizing inductance. The proposed controller has been tested both in numerical simulation and experimentally on a suitably designed test setup. Moreover, it has been compared w…

0209 industrial biotechnologyEngineeringComputer scienceStator020209 energy02 engineering and technologyIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaControl theorylawLinearizationRobustness (computer science)0202 electrical engineering electronic engineering information engineeringTorqueFeedback linearizationElectrical and Electronic EngineeringInduction motorfeedback linearizationComputer simulationbusiness.industry020208 electrical & electronic engineeringControl engineeringPartial state feedbackMagnetic coreControl and Systems Engineeringrobust control.Feedback linearization (FL)Robust controlbusinessInduction motorrobust control
researchProduct

Input-Output Feedback Linearization Control with On-line MRAS Based Inductor Resistance Estimation of Linear Induction Motors Including the Dynamic E…

2016

This paper proposes the theoretical framework and the consequent application of the input–output feedback linearization (FL) control technique to linear induction motors (LIMs). LIM, additionally to rotating induction motor, presents other strong nonlinearities caused by the dynamic end effects, leading to a space-vector dynamic model with time-varying inductance and resistance terms and a braking force term. This paper, starting from a recently developed dynamic model of the LIM taking into consideration its end effects, defines a FL technique suited for LIMs, since it inherently considers its dynamic end effects. Additionally, it proposes a technique for the on-line estimation of the indu…

0209 industrial biotechnologyEngineeringLinear induction motor feedback linearization end-effects MRAS estimator.02 engineering and technologyInductorEnd effectsIndustrial and Manufacturing Engineering020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaControl theoryAdaptive system0202 electrical engineering electronic engineering information engineeringlinear induction motor (LIM)Feedback linearizationElectrical and Electronic Engineeringmodel reference adaptive system (MRAS) estimatorbusiness.industry020208 electrical & electronic engineeringControl engineeringInductanceControl and Systems EngineeringLinear induction motorfeedback linearization (FL)HyperstabilitybusinessMRASInduction motor
researchProduct

Dynamic Response of a Rigital Displacement Motor Operating with Various Displacement Strategies

2019

Digital displacement technology has the potential of revolutionizing the performance of hydraulic piston pumps and motors. Instead of connecting each cylinder chamber to high and low pressure in conjunction with the shaft position, two electrically-controlled on/off valves are connected to each chamber. This allows for individual cylinder chamber control. Variable displacement can be achieved by using different displacement strategies, like for example the full stroke, partial stroke, or sequential partial stroke displacement strategy. Each displacement strategy has its transient and steady-state characteristics. This paper provides a detailed simulation analysis of the transient and steady…

0209 industrial biotechnologyExperimental validationControl and OptimizationSteady state (electronics)Digital displacement motorComputer scienceEnergy Engineering and Power Technology02 engineering and technologyVariable displacement01 natural scienceslcsh:Technologylaw.inventionCylinder (engine)PistonTransient response020901 industrial engineering & automationlawControl theoryexperimental validation0103 physical sciencesCylinderDisplacement (orthopedic surgery)Stroke (engine)Transient responsedisplacement strategiesElectrical and Electronic Engineeringsteady-state response010301 acousticsEngineering (miscellaneous)Steady-state responseRenewable Energy Sustainability and the Environmentlcsh:TModelingmodelingDisplacement strategiestransient responseHydraulic cylinderVDP::Teknologi: 500digital displacement motordigital displacement motor; displacement strategies; transient response; steady-state response; modeling; experimental validationTransient (oscillation)Energy (miscellaneous)
researchProduct

Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.

2020

Neurological disorders such as cerebral paralysis, spinal cord injuries[acronym](SCI), and strokes, result in the impairment of motor control and induce functional difficulties to human beings like walking, standing, etc. Physical injuries due to accidents and muscular weaknesses caused by aging [english]affectsaffect people and can cause them to lose their ability to perform daily routine functions. In order to help people recover or improve their dysfunctional activities and quality of life after accidents or strokes, assistive devices like exoskeletons and orthoses are developed. Control strategies for control of exoskeletons are developed with the desired intention of improving the qual…

0209 industrial biotechnologyObserver (quantum physics)Computer sciencenonlinear state error feedback (NLSEF)02 engineering and technologyWalkingActive disturbance rejection controllcsh:Chemical technologyBiochemistryArticleAnalytical ChemistryDifferentiator020901 industrial engineering & automationimproved active disturbance rejection control (I-ADRC)Control theory0202 electrical engineering electronic engineering information engineeringHumanstrajectory trackingnonlinear state error feedback (NLSEF).lcsh:TP1-1185State observerElectrical and Electronic Engineeringlower limb robotic rehabilitation exoskeleton (LLRRE)Instrumentationtracking differentiator (TD)020208 electrical & electronic engineeringRehabilitationMotor controlRoboticsExoskeleton DeviceAtomic and Molecular Physics and OpticsExoskeletonNonlinear systemLower ExtremityTrajectoryQuality of LifeRobust controllinear extended state observer (LESO)Sensors (Basel, Switzerland)
researchProduct

Estimation of Sway-angle Based on Hybrid State Observer Using Continuous and Discrete Sensing

2019

A hybrid state observer design is presented herein to estimate sway-angle and angular velocity in trolley systems with pendulum. In general, anti-sway control for trolley systems with pendulum such as overhead cranes are designed based on sway-angle signals detected by angular sensors. Opposed to that, a state observer without those sensors is proposed to estimate the sway-angle of the pendulum. A standard linear continuous feedback observer causes estimation error owing to the system nonlinearity and modeling error. This paper proposes a hybrid state observer incorporating discrete sensor signals. In the hybrid state observer, the estimation performance is improved by correcting the state …

0209 industrial biotechnologyObserver (quantum physics)OscillationComputer science020208 electrical & electronic engineeringPendulumAngular velocity02 engineering and technologyServomotorNonlinear system020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringOverhead (computing)State (computer science)State observerIECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society
researchProduct

Linearized Piecewise Affine in Control and States Hydraulic System: Modeling and Identification

2018

In this paper, the modeling and identification of a nonlinear actuated hydraulic system is addressed. The full-order model is first reduced in relation to the load pressure and flow dynamics and, based thereupon, linearized over the entire operational state-space. The dynamics of the proportional control valve is identified, analyzed, and intentionally excluded from the reduced model, due to a unity gain behavior in the frequency range of interest. The input saturation and dead-zone nonlinearities are considered while the latter is identified to be close to 10% of the valve opening. The mechanical part includes the Stribeck friction detected and estimated from the experiments. The lineariza…

0209 industrial biotechnologySeries (mathematics)020208 electrical & electronic engineeringProportional control02 engineering and technologyServomotorNonlinear system020901 industrial engineering & automationFlow (mathematics)Control theoryLinearization0202 electrical engineering electronic engineering information engineeringRange (statistics)Hydraulic machineryMathematicsIECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
researchProduct

Sensorless Speed Control for Double-Sided Linear Induction Motor Applications

2019

In this work, a flux and speed observer for double-sided linear induction motor applications is presented and experimentally validated. More in detail, from a Double-Sided Linear Induction Motor (DLIM) prototype, the complete modelling and the determination of the related parameters are here reported. Furthermore, the equations for a d-flux and q-flux observer are conceived and several simulation tests are performed. From the good agreements between the trends over time of the speed estimated by the observer and the simulated one, it can be stated that the observer is well designed. Moreover, in order to experimentally validate the proposed observer, a test bench is set-up for the DLIM/obse…

0209 industrial biotechnologyTest benchElectronic speed controlObserver (quantum physics)Computer scienceSpeed control020208 electrical & electronic engineeringWork (physics)DLIM02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciDynamic modelFlux observerSettore ING-IND/31 - Elettrotecnica020901 industrial engineering & automationControl theoryLinear induction motor0202 electrical engineering electronic engineering information engineeringDSPACEFlux observer2019 8th International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct