Search results for "multiple"
showing 10 items of 2678 documents
A Single-sensor High-resolution Panoramic Optical Mapping Configuration for Simultaneous Non-overlapped Complete Atrial and Ventricular Parametric Im…
2017
Nowadays optical mapping (OM) is the primary method for imaging electrophysiologically relevant parameters from the outer surface of Langendorff-perfused hearts. This technique has become essential for comprehensively understanding mechanisms of cardiac propagation during physiological activation, arrhythmia, and therapeutic antiarrhythmic interventions in translational hearts. Panoramic whole heart optical mapping systems, using either multiple cameras, plane mirrors or a combination of both, have been developed to overcome intrinsic visualization limitations to traditional single-sensor designs. However current panoramic OM systems are financially challenging for physiology and engineerin…
Effect of Buthionine Sulfoximine on the Sensitivity to Doxorubicin of Parent and MDR Tumor Cell Lines
1994
We have studied the interaction of glutathione-depleting concentrations of buthionine sulfoximine (BSO) with the anti-proliferative activity of doxorubicin (DXR) in three tumor lines, the mouse B16 melanoma. Friend erythroleukemia and the human K562 leukemia, both as DXR-sensitive and-resistant (with typical multidrug resistance) variants. BSO significantly enhanced the DXR effects in the wild-type Friend and K562 leukemias, and especially in the drug-resistant subline of Friend leukemia. BSO did not modify DXR accumulation and retention in the latter clone. Moreover, neither BSO nor verapamil used alone completely reversed the resistance to DXR of this cell line; their combination was more…
Repurposing old drugs to fight multidrug resistant cancers.
2020
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approa…
VDBP, CYP27B1, and 25-Hydroxyvitamin D Gene Polymorphism Analyses in a Group of Sicilian Multiple Sclerosis Patients
2016
Multiple sclerosis (MS) is a chronic demyelinating disease of central nervous system regarded as one of the most common causes of neurological disability in young adults. The exact etiology of MS is not yet known, although epidemiological data indicate that both genetic susceptibility and environmental exposure are involved. A poor vitamin D status has been proposed as the most attractive environmental factor. Several evidence have highlighted the importance of mutations in vitamin D-regulating genes for vitamin D status. The purpose of our study was to assess the genetic variants of VDBP and CYP27B1 in MS patients and in a control group. A total of 192 subjects, including 100 MS patients a…
Vitamin D and Genetic Susceptibility to Multiple Sclerosis.
2019
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS), resulting from the interaction among genetic, epigenetic, and environmental factors. Vitamin D is a secosteroid, and its circulating levels are influenced by environment and genetics. In the last decades, research data on the association between MS and vitamin D status led to hypothesize a possible role for hypovitaminosis D as a risk factor for MS. Some gene variants encoding proteins involved in vitamin D metabolism, transport, and function, which are responsible for vitamin D status alterations, have been related to MS susceptibility. This review explores the current literature on the influence o…
Dual-mode holographic microscopy imaging platform
2018
We report on a novel layout capable of dual-mode imaging in real time with different magnifications and resolution capabilities in lensless microscopy. The concept is based on wavelength multiplexing for providing two illuminations with different wavefront curvatures: one is collimated, allowing a large field of view (FOV) with a poor resolution limit, and the other is divergent, to achieve a better resolution limit (micron range) over a small FOV. Moreover, our recently reported concept of MISHELF microscopy [M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García and V. Micó, Sci. Rep., 2017, 7, 43291] is applied to the divergent illumination case, improving the image quality by noise averagin…
The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development.
2016
IF 7.932; International audience; Graft versus host disease (GvHD), which is the primary complication of allogeneic bone marrow transplantation, can alter the intestinal barrier targeted by activated donor T-cells. Chemical inhibition of the stress protein HSP90 was demonstrated in vitro to inhibit T-cell activation and to modulate endoplasmic reticulum (ER) stress to which intestinal cells are highly susceptible. Since the HSP90 inhibitor 17-allylamino-demethoxygeldanamycin (17AAG) is developed in clinics, we explored here its ability to control intestinal acute GvHD in vivo in two mouse GvHD models (C57BL/6 -> BALB/c and FVB/N -> Lgr5-eGFP), ex vivo in intestine organoids and in vitro in …
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters
2016
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data par…
Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders
2021
Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. …
MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy.
2019
Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn …