6533b86cfe1ef96bd12c8333
RESEARCH PRODUCT
Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders
Alberto J. L. MacarioLetizia PaladinoEverly Conway De MacarioCeleste Caruso BavisottoGiusi AlbertiAlessandra VitaleAntonella Marino GammazzaClaudia Campanellasubject
0301 basic medicineamyotrophic lateral sclerosislcsh:TechnologychaperonopathiesProinflammatory cytokinelcsh:Chemistrys disease03 medical and health sciences0302 clinical medicinechaperone systemmedicineamyotrophic lateral sclerosiGeneral Materials Sciencelcsh:QH301-705.5InstrumentationchaperonotherapyNeuroinflammationFluid Flow and Transfer Processesbiologylcsh:TMechanism (biology)Process Chemistry and Technologymolecular chaperonesNeurodegenerationAutophagyGeneral EngineeringParkinson’S diseasemolecular chaperonemedicine.diseaseHuntington’ s diseaseHsp90lcsh:QC1-999Computer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040multiple sclerosiChaperone (protein)Alzheimerbiology.proteinHSP60lcsh:Engineering (General). Civil engineering (General)Alzheimer’s diseaseNeurosciencelcsh:Physics030217 neurology & neurosurgeryHuntington’s diseasedescription
Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-14 | Applied Sciences |