Search results for "multivariate statistic"
showing 10 items of 327 documents
The asymptotic covariance matrix of the Oja median
2003
The Oja median, based on a sample of multivariate data, is an affine equivariant estimate of the centre of the distribution. It reduces to the sample median in one dimension and has several nice robustness and efficiency properties. We develop different representations of its asymptotic variance and discuss ways to estimate this quantity. We consider symmetric multivariate models and also the more narrow elliptical models. A small simulation study is included to compare finite sample results to the asymptotic formulas.
Inference based on the affine invariant multivariate Mann–Whitney–Wilcoxon statistic
2003
A new affine invariant multivariate analogue of the two-sample Mann–Whitney–Wilcoxon test based on the Oja criterion function is introduced. The associated affine equivariant estimate of shift, the multivariate Hodges-Lehmann estimate, is also considered. Asymptotic theory is developed to provide approximations for null distribution as well as for a sequence of contiguous alternatives to consider limiting efficiencies of the test and estimate. The theory is illustrated by an example. Hettmansperger et al. [9] considered alternative slightly different affine invariant extensions also based on the Oja criterion. The methods proposed in this paper are computationally more intensive, but surpri…
Symmetrised M-estimators of multivariate scatter
2007
AbstractIn this paper we introduce a family of symmetrised M-estimators of multivariate scatter. These are defined to be M-estimators only computed on pairwise differences of the observed multivariate data. Symmetrised Huber's M-estimator and Dümbgen's estimator serve as our examples. The influence functions of the symmetrised M-functionals are derived and the limiting distributions of the estimators are discussed in the multivariate elliptical case to consider the robustness and efficiency properties of estimators. The symmetrised M-estimators have the important independence property; they can therefore be used to find the independent components in the independent component analysis (ICA).
Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials
2017
Abstract Many applications in risk analysis require the estimation of the dependence among multivariate maxima, especially in environmental sciences. Such dependence can be described by the Pickands dependence function of the underlying extreme-value copula. Here, a nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated with a dataset of…
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…
Multiple Comparisons of Treatments with Stable Multivariate Tests in a Two‐Stage Adaptive Design, Including a Test for Non‐Inferiority
2000
The application of stabilized multivariate tests is demonstrated in the analysis of a two-stage adaptive clinical trial with three treatment arms. Due to the clinical problem, the multiple comparisons include tests of superiority as well as a test for non-inferiority, where non-inferiority is (because of missing absolute tolerance limits) expressed as linear contrast of the three treatments. Special emphasis is paid to the combination of the three sources of multiplicity - multiple endpoints, multiple treatments, and two stages of the adaptive design. Particularly, the adaptation after the first stage comprises a change of the a-priori order of hypotheses.
Some extensions of multivariate sliced inverse regression
2007
Multivariate sliced inverse regression (SIR) is a method for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we extend the existing approaches, based on the usual SIR I which only uses the inverse regression curve, to methods using properties of the inverse conditional variance. Contrary to the existing ones, these new methods are not blind for symmetric dependencies and rely on the SIR II or SIRα. We also propose their corresponding pooled slicing versions. We illustrate the usefulness of these approaches on simulation studies.
Gaussian component mixtures and CAR models in Bayesian disease mapping
2012
Hierarchical Bayesian models involving conditional autoregression (CAR) components are commonly used in disease mapping. An alternative model to the proper or improper CAR is the Gaussian component mixture (GCM) model. A review of CAR and GCM models is provided in univariate settings where only one disease is considered, and also in multivariate situations where in addition to the spatial dependence between regions, the dependence among multiple diseases is analyzed. A performance comparison between models using a set of simulated data to help illustrate their respective properties is reported. The results show that both in univariate and multivariate settings, both models perform in a comp…
Some links between conditional and coregionalized multivariate Gaussian Markov random fields
2020
Abstract Multivariate disease mapping models are attracting considerable attention. Many modeling proposals have been made in this area, which could be grouped into three large sets: coregionalization, multivariate conditional and univariate conditional models. In this work we establish some links between these three groups of proposals. Specifically, we explore the equivalence between the two conditional approaches and show that an important class of coregionalization models can be seen as a large subclass of the conditional approaches. Additionally, we propose an extension to the current set of coregionalization models with some new unexplored proposals. This extension is able to reproduc…
Prospective surveillance of multivariate spatial disease data
2012
Surveillance systems are often focused on more than one disease within a predefined area. On those occasions when outbreaks of disease are likely to be correlated, the use of multivariate surveillance techniques integrating information from multiple diseases allows us to improve the sensitivity and timeliness of outbreak detection. In this article, we present an extension of the surveillance conditional predictive ordinate to monitor multivariate spatial disease data. The proposed surveillance technique, which is defined for each small area and time period as the conditional predictive distribution of those counts of disease higher than expected given the data observed up to the previous t…