Search results for "nanobiotechnology"
showing 10 items of 10 documents
Structural characterization of site-modified nanocapsid with monodispersed gold clusters
2017
AbstractHepatitis E Virus-like particles self-assemble in to noninfectious nanocapsids that are resistant to proteolytic/acidic mucosal delivery conditions. Previously, the nanocapsid was engineered to specifically bind and enter breast cancer cells, where successful tumor targeting was demonstrated in animal models. In the present study, the nanocapsid surface was modified with a solvent-exposed cysteine to conjugate monolayer protected gold nanoclusters (AuNC). Unlike commercially available gold nanoparticles, AuNCs monodisperse in water and are composed of a discrete number of gold atoms, forming a crystalline gold core. Au102pMBA44 (Au102) was an ideal conjugate given its small 2.5 nm s…
DNA Sensors for the Detection of Biomolecules and Biochemical Conditions
2017
Individual Variability and Average Reliability in Parallel Networks of Heterogeneous Biological and Artificial Nanostructures
2013
We simulate the collective electrical response of heterogeneous ensembles of biological and artificial nanostructures whose individual threshold potentials show a significant variability. This problem is of current interest because nanotechnology is bound to produce nanostructures with a significant experimental variability in their individual physical properties. This diversity is also present in biological systems that are however able to process information efficiently. The nanostructures considered are the ion channels of biological membranes, nanowire field-effect transistors, and metallic nanoparticle-based single electron transistors. These systems are simulated with canonical models…
Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications
2013
The siliceous sponges, the demosponges and hexactinellid glass sponges, are unique in their ability to form biosilica structures with complex architectures through an enzyme-catalyzed mechanism. The biosilica skeleton of these sponges with its hierarchically structure and exceptional opto-mechanical properties has turned out to be an excellent model for the design of biomimetic nanomaterials with novel property combinations. In addition, biosilica shows morphogenetic activity that offers novel applications in the field of bone tissue engineering and repair. In recent years, much progress has been achieved towards the understanding of the principal enzymes, the silicateins that form the spon…
Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles
2015
Muhammad Ajaz Hussain,1 Abdullah Shah,1 Ibrahim Jantan,2 Muhammad Raza Shah,3 Muhammad Nawaz Tahir,4 Riaz Ahmad,5 Syed Nasir Abbas Bukhari2 1Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 2Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia; 3International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; 4Institute of Inorganic and Analytical Chemistry, Johannes Guttenberg University, Duesbergweg, Mainz, Germany; 5Centre for Advanced Studies in Physics (CASP), GC University, Lahore, Pakistan Abstract: Polysaccharides are attracting the vigil eye of…
Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure
2016
DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However…
A DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by an electric field.
2018
Merging biological and non-biological matter to fabricate nanoscale assemblies with controllable motion and function is of great interest due to its potential application, for example, in diagnostics and biosensing. Here, we have constructed a DNA-based bionanoactuator that interfaces with biological and non-biological matter via an electric field in a reversibly controllable fashion. The read-out of the actuator is based on motion-induced changes in the plasmon resonance of a gold nanoparticle immobilized to a gold surface by single stranded DNA. The motion of the gold nanoparticle and thus the conformational changes of the DNA under varying electric field were analyzed by dark field spect…
Au102(p-MBA)44 nanocluster, a superatom suitable for bio-applications
2016
Inorganic nanoparticles, including metals, semiconductors and metal oxides, comprise a common set of structures exhibiting an inorganic core ‘passivated’ by an organic shell. Ligated inorganic nanoparticles currently provoke widespread fundamental interest in their structural, optical and magnetic properties, which differ fundamentally from bulk counterparts. These nanomaterials are already finding applications in biology, medicine, solar energy, and display panels. 1-6 Conjugating inorganic nanoparticles with organic (biological) material for applications in nanobiology and nanomedicine creates significant challenges for controlling the effects on the environment, particularly regarding to…
Surface-immobilized DNAzyme-type biocatalysis
2014
The structure of the double helix of deoxyribonucleic acid (DNA, also called duplex-DNA) was elucidated sixty years ago by Watson, Crick, Wilkins and Franklin. Since then, DNA has continued to hold a fascination for researchers in diverse fields including medicine and nanobiotechnology. Nature has indeed excelled in diversifying the use of DNA: beyond its canonical role of repository of genetic information, DNA could also act as a nanofactory able to perform some complex catalytic tasks in an enzyme-mimicking manner. The catalytic capability of DNA was termed DNAzyme; in this context, a peculiar DNA structure, a quadruple helix also named quadruplex-DNA, has recently garnered considerable i…
Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing
2015
Abstract Considering the vital role of cells in life science and human health, cytosensors have become a hot research topic. Electrochemical cytosensors attract much attention. In this review, we discuss some recent efforts to construct novel and improved electrochemical cytosensors based on graphene, carbon nanotubes, some metal-nanoparticle composites, quantum dots, nanofibers and nanowires. In addition, we summarize examples of nanostructure applications in electrochemical cytosensing reported in the literature from 2009 to date, with their advantages and limitations, and stress their potential for future development. Also, we focus on the current surface-modification strategies with som…