6533b854fe1ef96bd12ae03e
RESEARCH PRODUCT
Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure
J. Jussi ToppariBoxuan ShenJenni LeppiniemiWolfgang FritzscheVesa P. HytönenKosti Tapiosubject
NanostructureMaterials scienceTransistors Electronicta221Metal NanoparticlesElectronsBioengineeringNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesnanoelectronicsNanobiotechnologyGeneral Materials ScienceA-DNAParticle Sizeta114Mechanical EngineeringTemperatureCoulomb blockadeDNA structureDNAGeneral ChemistryDielectrophoresis021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCharacterization (materials science)NanoelectronicsColloidal goldGold0210 nano-technologyDimerizationdescription
DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-05 | Nano Letters |