0000000000240133

AUTHOR

Boxuan Shen

0000-0002-1107-828x

showing 18 related works from this author

Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materials

2020

Here, we present a highly parallel fabrication method dubbed biotemplated lithography of inorganic nanostructures (BLIN) that enables large-scale versatile substrate patterning of metallic and semi...

NanostructureMaterials scienceFabricationNanotechnology02 engineering and technologySubstrate (printing)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanolithographyDNA nanotechnologyDNA origamiGeneral Materials Science0210 nano-technologyLithographyACS Applied Nano Materials
researchProduct

Applications of DNA self-assembled structures in nanoelectronics and plasmonics

2018

In this thesis, the potential applications of DNA self-assembled structures were explored in both nanoelectronics and plasmonics. The works can be divided into two parts: electrical characterization of unmodified multilayered DNA origami and DNA-gold-nanoparticle conjugates after they were trapped between gold nanoelectrodes by dielectrophoresis, and the development of a novel fabrication method using DNA origami as a template for smooth, high resolution metallic nanostructures as well as optical characterization of them. One of the biggest challenges in self-assembled nanoelectronic devices is to connect them to macroscopic circuits. Dielectrophoretic (DEP) trapping has been used extensivel…

dielectrophoresisSERSnanoelektroniikkaoptinen litografiaLSPRself-assemblyDNAmetallizationplasmonicsCDnanorakenteetplasmoniikkalithographyDNA origamiSET
researchProduct

Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo

2019

DNA nanotechnology provides a toolbox for creating custom and precise nanostructures with nanometer-level accuracy. These nano-objects are often static by nature and serve as versatile templates for assembling various molecular components in a user-defined way. In addition to the static structures, the intrinsic programmability of DNA nanostructures allows the design of dynamic devices that can perform predefined tasks when triggered with external stimuli, such as drug delivery vehicles whose cargo display or release can be triggered with a specified physical or chemical cue in the biological environment. Here, we present a DNA origami nanocapsule that can be loaded with cargo and reversibl…

entsyymitMaterials scienceta221enzymesMetal NanoparticlesGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesArticleBiophysical PhenomenaNanocapsulesDrug Delivery SystemsNanocapsulesDNA nanotechnologyFluorescence Resonance Energy TransferDNA origamiDNA nanotechnologyGeneral Materials ScienceA-DNApH controlGeneral EngineeringnanobiotekniikkaDNAHydrogen-Ion Concentration021001 nanoscience & nanotechnologyNanostructures0104 chemical sciencesFörster resonance energy transferTemplateFörster resonance energy transferdrug deliveryDrug deliveryNucleic Acid ConformationnanohiukkasetnanoparticlesGoldDNA origami0210 nano-technologyACS Nano
researchProduct

Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release

2021

We thank Dr H. Häkkänen for technical assistance and S. Julin for the 24HB DNA origami design. We acknowledge the provision of facilities and technical support by Aalto University Bioeconomy Facilities and OtaNano – Nanomicroscopy Center (Aalto-NMC). The research was carried out under the Academy of Finland Centres of Excellence Programme (2014–2019). Academy of Finland [308578 to M.A.K.]; Deutsche Forschungsgemeinschaft [Emmy Noether Programme to A.H.-J., SFB1032 (Project A06) to T.L.]; Emil Aaltonen Foundation [to H.I. and V.L.]; Jane and Aatos Erkko Foundation [to J.A.I. and V.L.]; Sigrid Jusélius Foundation [to V.L.]; Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Sc…

Drug CarriersAntibiotics AntineoplasticAcademicSubjects/SCI00010organic chemicalstechnology industry and agricultureMagnesium Chloridelääkeaineetmacromolecular substancesDNABuffersnanolääketiedeNanostructurescarbohydrates (lipids)Drug LiberationnanorakenteetChemical Biology and Nucleic Acid ChemistryDoxorubicinpolycyclic compoundsDeoxyribonuclease INucleic Acids Research
researchProduct

Dynamic DNA Origami Devices

2018

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled…

Mechanical movementnanotechnologyDNA nanotechnologyDNA origamiRoboticsSelf-assemblyMolecular devices
researchProduct

Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release

2020

Doxorubicin (DOX) is a commonly employed drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing programmable DOX-loaded DNA nanostructures that can be further tailored for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of promising DOX-loaded DNA nanocarriers remains limited and incoherent. A number of reports have over-looked the fundamentals of the DOX-DNA interaction, let alone the peculiarities arising from the complexity of the system as a whole. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostruct…

NanostructureCancer chemotherapytechnology industry and agriculturemacromolecular substancescarbohydrates (lipids)chemistry.chemical_compoundchemistryDrug deliverypolycyclic compoundsmedicineBiophysicsDNA origamiDoxorubicinChemotherapeutic drugsNanocarriersDNAmedicine.drug
researchProduct

Metallic Nanostructures Based on DNA Nanoshapes

2016

Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbit…

NanostructureMaterials scienceFabricationGeneral Chemical EngineeringeducationNanotechnologyReview02 engineering and technology010402 general chemistry01 natural sciencesmetallizationplasmonicslcsh:ChemistrynanoelectronicsDNA nanotechnologyDNA origamiGeneral Materials ScienceDNA nanotechnologyLithographyPlasmonnanoelektroniikkaPhysicsnanoparticleself-assembly021001 nanoscience & nanotechnologyMaterials science0104 chemical sciencesChemistrylcsh:QD1-999NanoelectronicsSelf-assemblyDNA origami0210 nano-technologyBiotechnology
researchProduct

Probing the Conformational States of a pH-Sensitive DNA Origami Zipper via Label-Free Electrochemical Methods

2021

Funding Information: Financial support from EPSRC DTP (grant EP/R513349/1), the Emil Aaltonen Foundation, the Sigrid Jusélius Foundation, the Jane and Aatos Erkko Foundation, and the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters is gratefully acknowledged. This work was carried out under the Academy of Finland Centers of Excellence Programme (2014–2019). We acknowledge the provision of facilities and technical support by Aalto University Bioeconomy Facilities and OtaNano—Nanomicroscopy Center (Aalto-NMC) and Micronova Nanofabrication Center. Publisher Copyright: © 2021 The Authors. Published by American Chemical Society DNA origami structures represe…

ZipperHoogsteen base pairIntercalation (chemistry)DNA Single-Stranded02 engineering and technologyBiosensing Techniques010402 general chemistry01 natural scienceskultaArticlechemistry.chemical_compoundnanorakenteetTA164ElectrochemistryDNA origamiGeneral Materials ScienceA-DNASpectroscopynanobiotekniikkaSurfaces and InterfacesDNAElectrochemical TechniquesHydrogen-Ion Concentration021001 nanoscience & nanotechnologyCondensed Matter PhysicsCombinatorial chemistrysähkökemia0104 chemical sciencesDielectric spectroscopychemistryDifferential pulse voltammetryGold0210 nano-technologyadsorptioDNA
researchProduct

Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure

2016

DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However…

NanostructureMaterials scienceTransistors Electronicta221Metal NanoparticlesElectronsBioengineeringNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesnanoelectronicsNanobiotechnologyGeneral Materials ScienceA-DNAParticle Sizeta114Mechanical EngineeringTemperatureCoulomb blockadeDNA structureDNAGeneral ChemistryDielectrophoresis021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesCharacterization (materials science)NanoelectronicsColloidal goldGold0210 nano-technologyDimerizationNano Letters
researchProduct

Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide

2015

DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…

ElectrophoresisMaterials scienceNanostructureSilicon dioxideta221educationClinical BiochemistryImmobilized Nucleic AcidsNanotechnology02 engineering and technologyDNA nanostructuresSubstrate (electronics)Microscopy Atomic Force01 natural sciencesBiochemistryAnalytical Chemistrychemistry.chemical_compoundHoneycombNanotechnologyDNA origamiDNA nanotechnologynanomanipulationElectrical measurementsSulfhydryl CompoundsElectrodesta218dielectrophoresista214ta114Physics010401 analytical chemistryElectric ConductivityDNAEquipment DesignDielectrophoresis021001 nanoscience & nanotechnologySilicon Dioxide0104 chemical sciencesNanostructuresChemistryNanolithographychemistryElectrical engineeringelectrical propertiesnanofabricationGold0210 nano-technologyBiotechnologyELECTROPHORESIS
researchProduct

Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems

2018

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled…

Computer sciencemechanical movementnanotekniikka02 engineering and technologyReview01 natural sciencesrobotiikkalcsh:Chemistrychemistry.chemical_compoundDNA origamiNanotechnologyDNA nanotechnologylcsh:QH301-705.5SpectroscopyroboticsPhysicsGeneral Medicineself-assembly021001 nanoscience & nanotechnologyMechanical engineeringComputer Science ApplicationsChemistryNanorobotics0210 nano-technologyBiotechnologyeducationNanotechnology010402 general chemistryMedical sciencesCatalysisDNA sequencingInorganic ChemistryDisplacement reactionsmolecular devicesDNA nanotechnologyAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyBase SequenceOrganic ChemistryResponsive systemsDNA0104 chemical sciencesNanostructureslcsh:Biology (General)lcsh:QD1-999chemistryTargeted drug deliveryNucleic Acid ConformationDNA origamiDNAInternational Journal of Molecular Sciences
researchProduct

One-step large-scale deposition of salt-free DNA origami nanostructures

2015

AbstractDNA origami nanostructures have tremendous potential to serve as versatile platforms in self-assembly -based nanofabrication and in highly parallel nanoscale patterning. However, uniform deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer. In addition, currently available deposition techniques are suitable merely for small scales. In this article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis can be …

FabricationMaterials scienceNanostructureta221educationNanotechnologySubstrate (electronics)DNA nanostructuresArticleDeposition (phase transition)DNA origamiDNA nanotechnologyBiochipNanoscopic scaleMultidisciplinaryta114PhysicsDNAself-assembly113 Computer and information sciencesMaterials scienceNanostructuresChemistryspray-coatingNanolithographySaltsDNA origamiDNA origamisBiotechnology
researchProduct

Custom-shaped metal nanostructures based on DNA origami silhouettes.

2015

The DNA origami technique provides an intriguing possibility to develop customized nanostructures for various bionanotechnological purposes. One target is to create tailored bottom-up-based plasmonic devices and metamaterials based on DNA metallization or controlled attachment of nanoparticles to the DNA designs. In this article, we demonstrate an alternative approach: DNA origami nanoshapes can be utilized in creating accurate, uniform and entirely metallic (e.g. gold, silver and copper) nanostructures on silicon substrates. The technique is based on developing silhouettes of the origamis in the grown silicon dioxide layer, and subsequently using this layer as a mask for further patterning…

NanostructureMaterials scienceFabricationSilverSiliconmetallic nanostructuresSilicon dioxideeducationta221ta220chemistry.chemical_elementMetal NanoparticlesNanotechnologymetallizationplasmonicschemistry.chemical_compoundDNA origamiDNA nanotechnologyGeneral Materials Scienceta216ta215PlasmonPhysicsMetamaterialself-assemblyDNASilicon DioxideMaterials scienceChemistrychemistryDNA origamiGoldLayer (electronics)CopperBiotechnologyNanoscale
researchProduct

DNA-Assisted Molecular Lithography

2018

During the past decade, DNA origami has become a popular method to build custom two- (2D) and three-dimensional (3D) DNA nanostructures. These programmable structures could further serve as templates for accurate nanoscale patterning, and therefore they could find uses in various biotechnological applications. However, to transfer the spatial information of DNA origami to metal nanostructures has been limited to either direct nanoparticle-based patterning or chemical growth of metallic seed particles that are attached to the DNA objects. Here, we present an alternative way by combining DNA origami with conventional lithography techniques. With this DNA-assisted lithography (DALI) method, we…

Materials scienceNanoparticleNanotechnology02 engineering and technologySubstrate (printing)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesTemplateDNA nanotechnologyDNA origamiSelf-assembly0210 nano-technologyLithographyPlasmon
researchProduct

Plasmonic nanostructures through DNA-assisted lithography

2018

DALI combines DNA origami with conventional top-down fabrication for creating designer high-resolution plasmonic nanostructures.

TechnologyMaterials scienceFabricationmaterials scienceta221ta220Nanotechnology02 engineering and technologySpectrum Analysis Raman010402 general chemistry01 natural sciencesplasmonicssymbols.namesakenanorakenteetnanostructuresDNA origamiDNA nanotechnologyComputer SimulationnanolithographyLithographyNanoscopic scaleResearch ArticlesPlasmonMultidisciplinaryta114PhysicsSciAdv r-articlesMetamaterialself-assemblyDNA021001 nanoscience & nanotechnologyoptics0104 chemical sciencesChemistryTemplateApplied Sciences and EngineeringsymbolsNucleic Acid ConformationPrintingDNA origami0210 nano-technologyRaman spectroscopyBiotechnologyResearch Article
researchProduct

Aptamer-embedded DNA origami cage for detecting (glycated) hemoglobin with a surface plasmon resonance sensor

2020

DNA origami-based cages functionalized with aptamer motifs, were used to detect hemoglobin and glycated hemoglobin. The binding between the cages and hemoglobin was monitored using a surface plasmon resonance (SPR) sensor. One DNA strand in the nano-cage was replaced with an aptamer that demonstrated a high affinity to hemoglobin (Hb) or glycated hemoglobin (gHb). Three types of the DNA nano-cages designed to fit the size and shape of hemoglobin were evaluated: one without an aptamer, one with the Hb-affinity aptamer (HA) and one with the gHb-affinity aptamer (GHA). Both DNA nano-cages embedded with HA and GHA showed significantly more stable binding with Hb and gHb by 5 and 9 times, respec…

Materials scienceSurface plasmon resonance sensorAptamerAptamerDissociation constant02 engineering and technologybiosensorit010402 general chemistry01 natural sciencesSurface plasmon resonance sensorchemistry.chemical_compoundGlycated hemoglobinnanorakenteethemoglobiiniDNA origamiGeneral Materials ScienceSurface plasmon resonanceMechanical EngineeringDNA021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesplasmonitDissociation constantchemistryMechanics of MaterialsBiophysicsDNA origamiHemoglobinGlycated hemoglobin0210 nano-technologyDNAMaterials Letters
researchProduct

Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules.

2011

We present a method for controlled connection of gold electrodes with dsDNA molecules (locally on a chip) by utilizing polymerase to elongate single-stranded DNA primers attached to the electrodes. Thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a procedure mimicking PCR, finally forming a complete dsDNA molecule bridging the gap between the electrodes. The technique opens up opportunities for building from the bottom-up, for detection and sensing applications, and also for molecular electronics.

Bridging (networking)Sensing applicationsFOS: Physical sciencesNanotechnology02 engineering and technologyDNA-Directed DNA PolymeraseCondensed Matter - Soft Condensed Matter03 medical and health sciencesMoleculeNanotechnologyGeneral Materials SciencePhysics - Biological PhysicsElectrodesPolymerase030304 developmental biologyDNA PrimersFluorescent Dyes0303 health sciencesbiologyImmobilized DNAta114OligonucleotideChemistryta1182Molecular electronicsDNA021001 nanoscience & nanotechnologyCondensed Matter - Other Condensed MatterBiological Physics (physics.bio-ph)Electrodebiology.proteinSoft Condensed Matter (cond-mat.soft)Gold0210 nano-technologyNucleic Acid Amplification TechniquesOther Condensed Matter (cond-mat.other)Nanoscale
researchProduct

DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications

2019

Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput synthesis of accurate and highly versatile structures with nanometer-level precision. Here, it is shown how the spatial information of DNA origami can be transferred to metallic nanostructures by combining the bottom-up DNA origami with the conventionally used top-down lithography approaches. This allows fabrication of billions of tiny nanostructures in one step onto selected substrates. The method is demonstrated using bowtie DNA origami to create metallic bowtie-shaped an…

General Immunology and MicrobiologyGeneral Chemical EngineeringGeneral NeurosciencenanotekniikkaBiosensing TechniquesDNAsubstrate patterningSilicon DioxideSpectrum Analysis RamanopticsplasmonicsGeneral Biochemistry Genetics and Molecular BiologyoptiikkaNanostructuresnanorakenteetHumansNanotechnologyPrintingDNA nanotechnologynanohiukkasetDNA origamimetal nanoparticlesnanolithographyJournal of Visualized Experiments
researchProduct