6533b858fe1ef96bd12b58fa
RESEARCH PRODUCT
Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide
Hendrik DietzJ. Jussi ToppariBoxuan ShenVeikko LinkoVeikko Linkosubject
ElectrophoresisMaterials scienceNanostructureSilicon dioxideta221educationClinical BiochemistryImmobilized Nucleic AcidsNanotechnology02 engineering and technologyDNA nanostructuresSubstrate (electronics)Microscopy Atomic Force01 natural sciencesBiochemistryAnalytical Chemistrychemistry.chemical_compoundHoneycombNanotechnologyDNA origamiDNA nanotechnologynanomanipulationElectrical measurementsSulfhydryl CompoundsElectrodesta218dielectrophoresista214ta114Physics010401 analytical chemistryElectric ConductivityDNAEquipment DesignDielectrophoresis021001 nanoscience & nanotechnologySilicon Dioxide0104 chemical sciencesNanostructuresChemistryNanolithographychemistryElectrical engineeringelectrical propertiesnanofabricationGold0210 nano-technologyBiotechnologydescription
DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol-linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single-structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick-like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol-linkers tended to induce an etched "nanocanyon" in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP-trapped origami. The results show that the demonstrated DEP-trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP-assisted deformation of the substrates onto which they are attached.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 | ELECTROPHORESIS |