Search results for "nanofiber"

showing 10 items of 107 documents

Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition

2010

Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…

AnataseMaterials scienceSettore ING-IND/22 - Scienza e Tecnologia dei MaterialiNanotechnologyCathodoluminescenceChemical vapor depositionNANOWIRESNANOSTRUCTURESZN-DOPINGTITANIA; ELECTROSPINNING; NANOFIBERS; CHEMICAL VAPOUR DEPOSITION ZN-DOPINGROUTEXPSGeneral Materials ScienceMetalorganic vapour phase epitaxyZINC-OXIDENanocompositeDopantELECTROSPINNINGPHOTOCATALYTIC ACTIVITYGeneral ChemistryOPTICAL-PROPERTIESCondensed Matter PhysicsNANOCOMPOSITESElectrospinningCHEMICAL VAPOUR DEPOSITIONNanofiberTITANIAPHOTOLUMINESCENCESENSITIZED SOLAR-CELLSSENSITIZED SOLAR-CELLS; ZINC-OXIDE; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; NANOSTRUCTURES; NANOCOMPOSITES; NANOWIRES; ROUTE; XPSNANOFIBERS
researchProduct

Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wo…

2022

Here we reported the fabrication of an electrospun membrane based on a hyaluronic acid derivative (HA-EDA) to be used as a bandage for the potential treatment of chronic wounds. The membrane, loaded with graphene oxide (GO) and ciprofloxacin, showed photothermal properties and light-triggered drug release when irradiated with a near-infrared (NIR) laser beam. Free amino groups of HA-EDA derivative allowed autocrosslinking of the elec- trospun membrane; thus, a substantial enhancement in the hydrolytic resistance of the patch was obtained. In vitro antibacterial activity studies performed on Staphylococcus aureus and Pseudomonas aeruginosa revealed that such electrospun membranes, due to the…

Staphylococcus aureusGeneral MedicineStaphylococcal InfectionsBiochemistryHyaluronan derivative Graphene oxide Nanofibers AntibiofilmAnti-Bacterial AgentsStructural BiologySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPseudomonas aeruginosaWound InfectionHumansGraphiteHyaluronic AcidMolecular BiologyInternational journal of biological macromolecules
researchProduct

Physical and biological properties of electrospun poly(d,l‐lactide)/nanoclay and poly(d,l‐lactide)/nanosilica nanofibrous scaffold for bone tissue en…

2021

Abstract Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrat…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTissue ScaffoldsPolyesterstechnology industry and agricultureNanofibersSettore ING-IND/34 - Bioingegneria Industrialenanosilicapre‐osteoblastic cellsBone and BonesCell LineNanocompositesnanoclayMiceSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiOsteogenesispre-osteoblastic cellsAnimalspolylactic acidResearch ArticleselectrospinningResearch ArticleJournal of Biomedical Materials Research. Part a
researchProduct

Programmable assembly of peptide amphiphile via noncovalent-to-covalent bond conversion

2017

Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses r…

Mechanical bondStereochemistryChemistry MultidisciplinaryStatic ElectricitySupramolecular chemistry02 engineering and technology010402 general chemistryPhotochemistryNANOSTRUCTURES01 natural sciencesBiochemistryArticleCatalysisSupramolecular assemblySurface-Active AgentsColloid and Surface ChemistryMicroscopy Electron TransmissionSYSTEMSPeptide amphiphileDRUG-DELIVERYCONTROLLED LENGTHchemistry.chemical_classificationScience & TechnologyMICELLESMolecular StructureChemistryHydrogen bondIntermolecular forceHydrogen BondingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSUPRAMOLECULAR POLYMERSSupramolecular polymersChemistryPOLYMERIZATIONCovalent bondPhysical SciencesGROWTHPeptides0210 nano-technologyNANOFIBERS
researchProduct

Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the os…

2014

Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(e-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicate…

ScaffoldBiocompatibilityPolyestersNanofibersOsteoclastsNanotechnologyBiocompatible MaterialsApplied Microbiology and BiotechnologyMineralization (biology)chemistry.chemical_compoundCalcification PhysiologicOsteoclastCell Line TumormedicineHumansNanotechnologySaos-2 cellsCell ProliferationTissue ScaffoldsChemistrytechnology industry and agricultureGeneral MedicineSilicon DioxideElectrospinning3. Good healthTetraethyl orthosilicatemedicine.anatomical_structureChemical engineeringNanofiberMolecular MedicineBiotechnologyBiotechnology journal
researchProduct

Nanofibrous Polymeric Membranes for Air Filtration Application: A Review of Progress after the COVID‐19 Pandemic

2023

Air pollution is one of the major global problems causing around 7 million dead per year. In fact, a connection between infectious disease transmission, including COVID-19, and air pollution has been proved: COVID-19 consequences on human health are found to be more severe in areas characterized by high levels of particulate matter (PM). Therefore, after the COVID-19 pandemic, the production of air filtration devices with high filtration efficiency has gained more and more attention. Herein, a review of the post-COVID-19 pandemic progress in nanofibrous polymeric membranes for air filtration is provided. First, a brief discussion on the different types of filtration mechanism and the key pa…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymers and PlasticsGeneral Chemical EngineeringOrganic Chemistryair filtration air pollution COVID-19 fibers nanofibers membranes particulate matter polymeric membranesMaterials ChemistryMacromolecular Materials and Engineering
researchProduct

Solid-State Pyrolyses of Metal Phthalocyanines: A Simple Approach towards Nitrogen-Doped CNTs and Metal/Carbon Nanocables

2006

Solid-state pyrolysis of organometallic precursors has emerged as an alternative method for preparing carbon nanostructures such as carbon nanotubes (CNT) and carbon anions. The morphology of the tubes can be controlled by the nature of the precursors and the pyrolysis procedures, and micrometer long nanotubes, composed of metal carbide wires encased in a graphitic sheath. Cobalt phthalocyanine (CoPc) as well as iron phthalocyanine were pyrolyzed at different temperatures to obtain CNTs. HRTEM and energy-dispersion X-Ray analysis disclosed that the core consisted of long, iron-containing single crystals and that the core was fully surrounded by crystallized graphic carbon. Iron-filled carbo…

IndolesMaterials scienceNitrogenSelective chemistry of single-walled nanotubesMetal Nanoparticleschemistry.chemical_elementElectronsNanotechnologyCarbon nanotubeIsoindolesCarbidelaw.inventionBiomaterialschemistry.chemical_compoundMicroscopy Electron TransmissionX-Ray DiffractionlawElectrochemistryNanotechnologyGeneral Materials ScienceNanotubes CarbonCarbon nanofiberTemperatureGeneral ChemistryFerrocenechemistryChemical engineeringSpectrophotometryFrit compressionMicroscopy Electron ScanningCarbonPyrolysisBiotechnologySmall
researchProduct

ELECTROSPUN NANOFIBROUS MATS IN FIBRE REINFORCED EPOXY LAMINATES

ElectrospinningInterlaminar fracture toughneHydrothermal agingNanofiberFiber reinforced epoxy composites; Electrospinning; Nanofiber; Interlaminar fracture toughness; Hydrothermal agingFiber reinforced epoxy composite
researchProduct

Biomineral Amorphous Lasers through Light-Scattering Surfaces Assembled by Electrospun Fiber Templates

2018

New materials aim at exploiting the great control of living organisms over molecular architectures and minerals. Optical biomimetics has been widely developed by microengineering, leading to photonic components with order resembling those found in plants and animals. These systems, however, are realized by complicated and adverse processes. Here we show how biomineralization might enable the one-step generation of components for amorphous photonics, in which light is made to travel through disordered scattering systems, and particularly of active devices such as random lasers, by using electrospun fiber templates. The amount of bio-enzymatically produced silica is related to light-scatterin…

Materials scienceFOS: Physical sciencesNanotechnology02 engineering and technology01 natural sciencesLight scatteringlaw.inventionlight-scatteringlawAtomic and Molecular Physics0103 physical sciencesElectronicOptical and Magnetic Materialsrandom lasers010306 general physicsbiosilicabiosilica; electrospun nanofibers; light-scattering; random lasers; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics; Condensed Matter Physicsbusiness.industryScatteringLight scattering021001 nanoscience & nanotechnologyLaserCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAmorphous solidNanolithographyelectrospun nanofibersOptical materialsnanofabricationPhotonicsBiomimeticsand Optics0210 nano-technologybusinessLasing thresholdPhysics - OpticsOptics (physics.optics)
researchProduct

Living Light-Induced Crystallization-Driven Self-Assembly for Rapid Preparation of Semiconducting Nanofibers.

2018

Well-defined nanostructures composed of conjugated polymers have attracted significant attention due to their intriguing electronic and optical properties. However, precise control of the size and uniformity of these semiconducting nanostructures is still rare and challenging, despite recent advances in strategies to obtain self-assembled nanostructures with narrow dispersions. Herein, we demonstrate the preparation of fluorescent conjugated block copolymers by one-shot polymerization and rapid formation of nanofibers in a few minutes via light-induced crystallization-driven self-assembly, driven by facile cis-to- trans photoisomerization of its poly( p-phenylenevinylene) blocks. Furthermor…

chemistry.chemical_classificationNanostructurePhotoisomerizationNanotechnology02 engineering and technologyGeneral ChemistryPolymerConjugated system010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCatalysis0104 chemical sciencesColloid and Surface ChemistryPolymerizationchemistryNanofiberCopolymerSelf-assembly0210 nano-technologyJournal of the American Chemical Society
researchProduct