Search results for "nanoreactor"

showing 7 items of 17 documents

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

2021

Abstract Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used …

Mycobacterium smegmatisHomogeneous catalysisNanotechnologyNanoreactor010402 general chemistrysingle-molecule FRET01 natural sciences7. Clean energyCatalysisCatalysis03 medical and health sciencesBacterial ProteinsFluorescence Resonance Energy TransferOrganometallic CompoundsParticle SizeResearch Articles030304 developmental biology0303 health sciencesChemistryencapsulinsGeneral Medicineself-assemblyGeneral ChemistrySingle-molecule FRETCompartmentalization (psychology)Bioorthogonal Chemistryhomogeneous catalysisNanostructures0104 chemical sciencesFörster resonance energy transferMicroscopy FluorescenceCovalent bondSelf-assemblyMINFLUXResearch ArticleAngewandte Chemie International Edition
researchProduct

Nanohydrogel Formation within the Halloysite Lumen for Triggered and Sustained Release

2018

An easy strategy to obtain nanohydrogels within the halloysite nanotube (HNTs) lumen was investigated. Inorganic reverse micelles based on HNTs and hexadecyltrimethylammonium bromides were dispersed in chloroform, and the hydrophilic cavity was used as a nanoreactor to confine the gel formation based on alginate cross-linked by calcium ions. Spectroscopy and electron microscopy experiments proved the confinement of the polymer into the HNT lumen and the formation of calcium-mediated networks. Biological tests proved the biocompatibility of the hybrid hydrogel. The nanogel in HNTs was suitable for drug loading and sustained release with the opportunity of triggered burst release by chemical …

NanotubeMaterials scienceBiocompatibilityChlorine compound02 engineering and technologyNanoreactorHexadecyl trimethyl ammonium bromideengineering.materialHybrid hydrogel010402 general chemistry01 natural sciencesMicelleHalloysiteSustained release Drug deliveryAdsorptionKaoliniteHalloysite nanotube (HNTs)Chemical stimuliGeneral Materials ScienceControlled drug deliveryBiological testSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationTargeted drug deliveryCrosslinkingReverse micellePolymer021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringchemistryYarn Biological applicationengineeringBiocompatibilityCalcium0210 nano-technologyMicelleNanogelACS Applied Materials & Interfaces
researchProduct

Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis

2021

Abstract Hypothesis Electrostatic attractions between the anionic head group of sodium alkylsulphates and the positively charged inner surface of halloysite nanotubes (HNTs) drive to the formation of tubular inorganic micelles, which might be employed as nanoreactors for the confinement of non polar compounds in aqueous media. On this basis, sodium alkylsulphates/halloysite hybrids could be efficient nanocatalysts for organic reactions occurring in water. Experiments Sodium decylsulphate (NaDeS) and sodium dodecylsulphate (NaDS) were selected for the functionalization of the halloysite cavity. The composition, the structure and the surface charge properties of the hybrid nanotubes were dete…

SodiumMicellar catalysischemistry.chemical_elementNanoreactorengineering.materialHalloysiteMicelleCatalysisBiomaterialsMicroviscosityColloid and Surface ChemistryPulmonary surfactantNanotechnologyMicellesNanotubesChemistryHalloysite nanotubesSodium alkylsulphatesNanomaterial-based catalystSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsInorganic micellesChemical engineeringengineeringSurface modificationClay
researchProduct

Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles

2015

Muhammad Ajaz Hussain,1 Abdullah Shah,1 Ibrahim Jantan,2 Muhammad Raza Shah,3 Muhammad Nawaz Tahir,4 Riaz Ahmad,5 Syed Nasir Abbas Bukhari2 1Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 2Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia; 3International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; 4Institute of Inorganic and Analytical Chemistry, Johannes Guttenberg University, Duesbergweg, Mainz, Germany; 5Centre for Advanced Studies in Physics (CASP), GC University, Lahore, Pakistan Abstract: Polysaccharides are attracting the vigil eye of…

Staphylococcus aureusSilverMaterials scienceScanning electron microscopeDrug StorageBiophysicsMetal NanoparticlesPharmaceutical ScienceBioengineeringNanotechnologyNanoreactorMicroscopy Atomic Forcenanobiotechnologyantimicrobial assaySilver nanoparticlestorageBiomaterialsAnti-Infective AgentsMicroscopy Electron TransmissionX-Ray DiffractionInternational Journal of NanomedicinePhase (matter)Spectroscopy Fourier Transform InfraredDrug DiscoveryEscherichia coliStaphylococcus epidermidisThin filmCelluloseOriginal ResearchAqueous solutiongreen synthesisOrganic Chemistrytechnology industry and agricultureGreen Chemistry TechnologyGeneral MedicinestabilityTransmission electron microscopyPseudomonas aeruginosaMicroscopy Electron ScanningSunlightAspergillus nigernanoreactorAbsorption (chemistry)Bacillus subtilisNuclear chemistryInternational Journal of Nanomedicine
researchProduct

Magnetic Nanocomposites Formed by FeNi3 Nanoparticles Embedded in Graphene. Application as Supercapacitors

2013

A general family of magnetic nanocomposites formed by FeNi3 ferromagnetic nanoparticles (NPs) embedded in a graphitized carbon matrix is reported. The soft chemical approach used relies on the catalytic effect of the NPs resulting from the thermal decomposition of the layered double hydroxide precursor, which acts as a multilayered nanoreactor enabling the formation of a range of carbon nanoforms (CNFs). This is followed by acid treatment of the as-prepared nanocomposites to isolate the different CNFs formed. These range from carbon nano-onions to graphene depending on the temperature of the thermal decomposition. This synthetic process paves the way for the rational design of metal–carbon …

SupercapacitorNanocompositeMaterials scienceMagnetismGrapheneThermal decompositionNanoparticlechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral ChemistryNanoreactor010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences7. Clean energy0104 chemical scienceslaw.inventionchemistrylawGeneral Materials Science0210 nano-technologyCarbonParticle & Particle Systems Characterization
researchProduct

Direct Visualization of Pyrrole Reactivity upon Confinement within a Cyclodextrin Metal–Organic Framework

2019

Metal–organic frameworks can be used as porous templates to exert control over polymerization reactions. Shown here are the possibilities offered by these crystalline, porous nanoreactors to capture highly-reactive intermediates for a better understanding of the mechanism of polymerization reactions. By using a cyclodextrin framework the polymerization of pyrrole is restricted, capturing the formation of terpyrrole cationic intermediates. Single-crystal X-ray diffraction is used to provide definite information on the supramolecular interactions that induce the formation and stabilization of a conductive array of cationic complexes.

chemistry.chemical_classificationCyclodextrin010405 organic chemistryChemistrytechnology industry and agricultureSupramolecular chemistryCationic polymerizationGeneral Medicinemacromolecular substancesGeneral ChemistryNanoreactor010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysis0104 chemical scienceschemistry.chemical_compoundPolymerizationNon-covalent interactionsMetal-organic frameworkPyrroleAngewandte Chemie International Edition
researchProduct

Functional Polymer-Opals from Core-Shell Colloids

2007

Colloidal photonic crystals were prepared from monodisperse core-shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core-shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His-tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric …

chemistry.chemical_classificationMaterials sciencePolymers and Plasticsdigestive oral and skin physiologyOrganic ChemistryDispersityEmulsion polymerizationNanoreactorPolymerColloidal crystalchemistry.chemical_compoundMonomerchemistryChemical engineeringColloidal goldPolymer chemistryMaterials ChemistrySurface modificationMacromolecular Rapid Communications
researchProduct