6533b828fe1ef96bd128846a

RESEARCH PRODUCT

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

Andreas WaltherThorsten HugelClaudia Jessen-trefzerRegine SüssJasmin K. PapeJan Keller-findeisenRuta GerasimaiteSaskia GroeerGrazvydas LukinaviciusBenedikt DeuringerPhilipp LohnerMariia ZmysliaJohann ThurnStefan W. Hell

subject

Mycobacterium smegmatisHomogeneous catalysisNanotechnologyNanoreactor010402 general chemistrysingle-molecule FRET01 natural sciences7. Clean energyCatalysisCatalysis03 medical and health sciencesBacterial ProteinsFluorescence Resonance Energy TransferOrganometallic CompoundsParticle SizeResearch Articles030304 developmental biology0303 health sciencesChemistryencapsulinsGeneral Medicineself-assemblyGeneral ChemistrySingle-molecule FRETCompartmentalization (psychology)Bioorthogonal Chemistryhomogeneous catalysisNanostructures0104 chemical sciencesFörster resonance energy transferMicroscopy FluorescenceCovalent bondSelf-assemblyMINFLUXResearch Article

description

Abstract Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used as hosts for transition metal catalysis inside living cells in confined space.

10.1002/anie.202110327http://dx.doi.org/10.1002/anie.202110327