0000000000631579

AUTHOR

Philipp Lohner

showing 2 related works from this author

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

2021

Abstract Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used …

Mycobacterium smegmatisHomogeneous catalysisNanotechnologyNanoreactor010402 general chemistrysingle-molecule FRET01 natural sciences7. Clean energyCatalysisCatalysis03 medical and health sciencesBacterial ProteinsFluorescence Resonance Energy TransferOrganometallic CompoundsParticle SizeResearch Articles030304 developmental biology0303 health sciencesChemistryencapsulinsGeneral Medicineself-assemblyGeneral ChemistrySingle-molecule FRETCompartmentalization (psychology)Bioorthogonal Chemistryhomogeneous catalysisNanostructures0104 chemical sciencesFörster resonance energy transferMicroscopy FluorescenceCovalent bondSelf-assemblyMINFLUXResearch ArticleAngewandte Chemie International Edition
researchProduct

Dynamic Structural Changes and Thermodynamics in Phase Separation Processes of an Intrinsically Disordered–Ordered Protein Model

2021

Elastin-like proteins (ELPs) are biologically important proteins and models for intrinsically disordered proteins (IDPs) and dynamic structural transitions associated with coacervates and liquid-liquid phase transitions. However, the conformational status below and above coacervation temperature and its role in the phase separation process is still elusive. Employing matrix least-squares global Boltzmann-fitting of the circular dichroism spectra of the ELPs (VPGVG) 20 , (VPGVG) 40 and (VPGVG) 60 , we found that coacervation occurs sharply when a certain number of repeat units has acquired β-turn conformation (in our sequence setting a threshold of ~20 repeat units). The differential scatter…

Models Molecular540 Chemistry and allied sciencesPhase transitionCircular dichroismCoacervateProtein ConformationChemistryPhase separation processCircular DichroismSequence (biology)General ChemistryIntrinsically disordered proteinsCircular dichroism spectraCatalysisIntrinsically Disordered Proteins540 ChemieBiophysicsProtein modelHumansThermodynamicsPeptidesAngewandte Chemie International Edition
researchProduct