0000000000631571

AUTHOR

Thorsten Hugel

showing 4 related works from this author

Inside a Shell—Organometallic Catalysis Inside Encapsulin Nanoreactors

2021

Abstract Compartmentalization of chemical reactions inside cells are a fundamental requirement for life. Encapsulins are self‐assembling protein‐based nanocompartments from the prokaryotic repertoire that present a highly attractive platform for intracellular compartmentalization of chemical reactions by design. Using single‐molecule Förster resonance energy transfer and 3D‐MINFLUX analysis, we analyze fluorescently labeled encapsulins on a single‐molecule basis. Furthermore, by equipping these capsules with a synthetic ruthenium catalyst via covalent attachment to a non‐native host protein, we are able to perform in vitro catalysis and go on to show that engineered encapsulins can be used …

Mycobacterium smegmatisHomogeneous catalysisNanotechnologyNanoreactor010402 general chemistrysingle-molecule FRET01 natural sciences7. Clean energyCatalysisCatalysis03 medical and health sciencesBacterial ProteinsFluorescence Resonance Energy TransferOrganometallic CompoundsParticle SizeResearch Articles030304 developmental biology0303 health sciencesChemistryencapsulinsGeneral Medicineself-assemblyGeneral ChemistrySingle-molecule FRETCompartmentalization (psychology)Bioorthogonal Chemistryhomogeneous catalysisNanostructures0104 chemical sciencesFörster resonance energy transferMicroscopy FluorescenceCovalent bondSelf-assemblyMINFLUXResearch ArticleAngewandte Chemie International Edition
researchProduct

Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study

2018

Single-molecule Forster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between +/- 0.02 and +/- 0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and…

0301 basic medicinePHOTON DISTRIBUTIONDYNAMICSAccuracy and precisionTechnologyBiophysicsRESONANCE ENERGY-TRANSFERBiochemistryMedical and Health SciencesArticle03 medical and health sciencesBlind studySingle-molecule biophysicsALTERNATING-LASER EXCITATIONSTRUCTURAL INFORMATIONFluorescence resonance energy transferDEPENDENCEQuantitative assessmentLife ScienceFLUORESCENCEStructure determinationMolecular BiologyQCVLAGBiophysical methodsReproducibilityReproducibility of ResultsCell BiologySingle-molecule FRETDNABiological SciencesPublisher CorrectionQPSPECTROSCOPIC RULER030104 developmental biologyFörster resonance energy transferBiofysicaBenchmark (computing)Photon distributionEPSREFRACTIVE-INDEXLaboratoriesBiological systemBiotechnologyDevelopmental Biology
researchProduct

Conformational dynamics of a single protein monitored for 24 hours at video rate

2018

We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show “open” and “closed” conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3–4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer a…

0301 basic medicineLetterProtein ConformationMolecular ConformationFOS: Physical sciencesHsp90Bioengineeringsingle molecule02 engineering and technology7. Clean energyQuantitative Biology - Quantitative Methods03 medical and health sciencesMolecular dynamicsFluorescence Resonance Energy TransferNanotechnologyGeneral Materials ScienceHSP90 Heat-Shock ProteinsPhysics - Biological PhysicsQuantitative Methods (q-bio.QM)PlasmonPhysicsVideo rateMechanical EngineeringProtein dynamics92Biomolecules (q-bio.BM)General ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsGold nanospheres030104 developmental biologyFörster resonance energy transferQuantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)Chemical physicsFOS: Biological sciencesprotein dynamicsPlasmon rulernonergodicityGold0210 nano-technologyLinker
researchProduct

FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices.

2021

International audience; Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever- increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among d…

0301 basic medicineconformationOpen scienceComputer scienceStructural Biology and Molecular BiophysicsAMINOACYL-TRANSFER-RNAINTRAMOLECULAR DISTANCE DISTRIBUTIONSReview ArticleRESONANCE ENERGY-TRANSFER01 natural sciencesbiomoleculesFREELY DIFFUSING MOLECULESDocumentationFluorescence Resonance Energy TransferMainstreamstructural biologyBiology (General)General NeuroscienceQRNANO-POSITIONING SYSTEMGeneral MedicinedynamicsINTRINSICALLY DISORDERED PROTEINSSingle Molecule ImagingFLUORESCENCE CORRELATION SPECTROSCOPY[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsMedicinecommunitysingle-moleculeQH301-705.5ScienceAppeal[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsBioengineeringchemical biology010402 general chemistryGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesALTERNATING-LASER EXCITATIONBiochemistry and Chemical Biologymolecular biophysicsbiochemistryMolecular BiologyStructure (mathematical logic)General Immunology and MicrobiologySINGLE-MOLECULE FRETTRANSITION PATH TIMESData science0104 chemical sciences030104 developmental biologyFRETPosition paperGeneric health relevanceBiochemistry and Cell BiologyeLife
researchProduct