Search results for "nanostructures"

showing 10 items of 352 documents

A multi-step mechanism and integrity of titanate nanoribbons.

2014

A one-step hydrothermal treatment of TiO2 powders under strongly basic conditions has been used to synthesize titanate nanoribbons. The nanoparticles were thoroughly characterized using several methods including transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectrometry (XPS) to determine their morphological, structural and chemical characteristics. The influence of the nature and size of the TiO2 precursor and of the reaction duration on the formation of the nanoribbons was investigated. The conditions required to obtain only titanate nanoribbons with a width ranging from 100 to 200 nm and several tens of micrometers in length w…

DiffractionTitaniumMaterials scienceNanotubesNanoparticleNanotechnologyMass spectrometrySpectrum Analysis RamanGrain sizeTitanateNanostructuresInorganic Chemistrysymbols.namesakeX-ray photoelectron spectroscopyChemical engineeringMicroscopy Electron TransmissionX-Ray DiffractionTransmission electron microscopysymbolsRaman spectroscopyDalton transactions (Cambridge, England : 2003)
researchProduct

Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release

2021

We thank Dr H. Häkkänen for technical assistance and S. Julin for the 24HB DNA origami design. We acknowledge the provision of facilities and technical support by Aalto University Bioeconomy Facilities and OtaNano – Nanomicroscopy Center (Aalto-NMC). The research was carried out under the Academy of Finland Centres of Excellence Programme (2014–2019). Academy of Finland [308578 to M.A.K.]; Deutsche Forschungsgemeinschaft [Emmy Noether Programme to A.H.-J., SFB1032 (Project A06) to T.L.]; Emil Aaltonen Foundation [to H.I. and V.L.]; Jane and Aatos Erkko Foundation [to J.A.I. and V.L.]; Sigrid Jusélius Foundation [to V.L.]; Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Sc…

Drug CarriersAntibiotics AntineoplasticAcademicSubjects/SCI00010organic chemicalstechnology industry and agricultureMagnesium Chloridelääkeaineetmacromolecular substancesDNABuffersnanolääketiedeNanostructurescarbohydrates (lipids)Drug LiberationnanorakenteetChemical Biology and Nucleic Acid ChemistryDoxorubicinpolycyclic compoundsDeoxyribonuclease INucleic Acids Research
researchProduct

DNA Nanostructures in Cell Biology and Medicine

2017

Drug delivery endocytosis DNA aptamers Dip Pen NanolithographyDna nanostructuresDip-pen nanolithographyDrug deliveryNanotechnologyBiologyDNA AptamersEndocytosisCell biology
researchProduct

Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells

2014

Background: In hepatocellular carcinoma (HCC), different signaling pathways are de-regulated, and among them, the expression of the epidermal growth factor receptor (EGFR). Tyrphostin AG-1478 is a lipophilic low molecular weight inhibitor of EGFR, preferentially acting on liver tumor cells. In order to overcome its poor drug solubility and thus improving its anticancer activity, it was entrapped into nanostructured lipid carriers (NLC) by using safe ingredients for parenteral delivery. Results: Nanostructured lipid carriers (NLC) carrying tyrphostin AG-1478 were prepared by using the nanoprecipitation method and different matrix compositions. The best system in terms of mean size, PDI, zeta…

DrugCarcinoma HepatocellularHepatocellular carcinomamedia_common.quotation_subjectBiomedical EngineeringMedicine (miscellaneous)Pharmaceutical ScienceAntineoplastic AgentsBioengineeringPharmacologyApplied Microbiology and BiotechnologyCell Line TumormedicineHumansEpidermal growth factor receptorNanostructured lipid carriers Tyrphostin AG-1478 Drug release Hepatocellular carcinoma EGFR inhibitor.media_commonEGFR inhibitorsDrug CarriersNanostructured lipid carriersbiologyChemistryResearchLiver NeoplasmsCorrectionDrug releaseTyrphostinsmedicine.diseaseLipidsTyrphostin AG-1478Molecular medicineIn vitroNanostructuresErbB ReceptorsEGFR inhibitorLiverSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoHepatocellular carcinomaDrug deliveryQuinazolinesbiology.proteinMolecular MedicineDrug carrier
researchProduct

Montmorillonite nanodevices for the colon metronidazole delivery.

2013

The adsorption profiles of the antibiotic metronidazole (MNE) into the K10-montmorillonite (MMT-K10) clay and the subsequent release have been investigated as a function of pH and MNE/MMT-K10 ratio, in order to evaluate the potential of the MNE/MMT-K10 hybrids as controlled drug delivery system. The adsorption mechanism has been first elucidated by performing complementary equilibrium and kinetic studies and through the X-ray diffractometry (XRD) characterization of the obtained composite materials. The gathered results allowed us to propose a mechanism consisting of a multi-step pathway involving the neutral and the cationic form of the drug, which interact with different sites of the clay…

DrugColonmedia_common.quotation_subjectPharmaceutical ScienceDrug release kineticschemistry.chemical_compoundAdsorptionDrug Delivery SystemsMetronidazolemedicineOrganic chemistrymedia_commonSettore CHIM/02 - Chimica FisicaK10-montmorillonite metronidazole adsorption drug deliverySettore GEO/06 - MineralogiaCationic polymerizationAnti-Bacterial AgentsNanostructuresMetronidazoleMontmorillonitechemistryChemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDrug deliveryBentoniteOral retinoidmedicine.drugInternational journal of pharmaceutics
researchProduct

Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity.

2005

Solid lipid nanoparticles (SLNs) containing tamoxifen, a nons- teroidal antiestrogen used in breast cancer therapy, were prepared by microemulsion and precipitation techniques. Tamoxifen loaded SLNs seem to have dimensional properties useful for parenteral administration, and in vitro plasmatic drug release studies demon- strated that these systems are able to give a prolonged release of the drug in the intact form. Preliminary study of antiproliferative ac- tivity in vitro, carried out on MCF-7 cell line (human breast cancer cells), demonstrated that SLNs, containing tamoxifen showed an antitumoral activity comparable to free drug. The results of char- acterization studies and of in vitro …

DrugOctanolsMaterials scienceTime FactorsAntineoplastic Agents Hormonalmedia_common.quotation_subjectPharmaceutical SciencePharmacologyColloidal Drug Delivery Systems Solid Lipid Nanoparticles (SLNs) TamoxifenBreast cancerDrug StabilityCell Line TumorSolid lipid nanoparticlemedicineHumansParticle Sizeskin and connective tissue diseasesmedia_commonCell ProliferationDrug CarriersWaterGeneral MedicineHydrogen-Ion Concentrationmedicine.diseaseAntiestrogenLipidsIn vitroNanostructuresbody regionsTamoxifenSolubilityDelayed-Action PreparationsCancer cellDrug carrierTamoxifenmedicine.drugDrug delivery
researchProduct

Field-induced nanolithography for high-throughput pattern transfer.

2009

Electromagnetic fieldMaterials scienceField (physics)NanotechnologyGeneral ChemistryDielectrophoresisNanostructuresBiomaterialsNanolithographyElectromagnetic FieldsQuantum dotQuantum DotsNanotechnologyGeneral Materials ScienceThroughput (business)BiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Near-field properties of plasmonic nanostructures with high aspect ratio

2014

International audience; Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements.

Electromagnetic field[PHYS]Physics [physics]RadiationMaterials science[ PHYS ] Physics [physics]DiscretizationCondensed Matter - Mesoscale and Nanoscale PhysicsComputationFOS: Physical sciencesNear and far fieldComputational Physics (physics.comp-ph)Condensed Matter PhysicsAspect ratio (image)Finite element methodComputational physicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)NanorodElectrical and Electronic EngineeringPlasmonic nanostructuresPhysics - Computational Physics
researchProduct

Dielectrophoretic trapping of DNA origami.

2008

In this thesis three-dimensional tube-shaped DNA-origamis were dielectrophoretically trapped within lithographically fabricated nanoelectrodes. The origamis had been premade while the electrodes were fabricated specifically for these experiments with two different gapsizes, 150 nm and 400 nm. The aim of the work was to capture individual nanotubes in the gap between the electrodes by utilizing the dielectrophoretic forces present in the structure when a solution containing the origamis was put onto the electrodes and a voltage was applied. It was observed during the experiments that the success of the dielectrophoretic trapping depended strongly on the trapping conditions. This caused the t…

ElectrophoresisMaterials scienceMacromolecular SubstancesSurface PropertiesMolecular ConformationNanotechnologyGeneral ChemistryTrappingMaterials testingDNADielectrophoresisMolecular conformationNanostructuresBiomaterialsElectromagnetic FieldsElectrodeMaterials TestingDNA origamiNanotechnologyGeneral Materials ScienceParticle SizeCrystallizationBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide

2015

DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…

ElectrophoresisMaterials scienceNanostructureSilicon dioxideta221educationClinical BiochemistryImmobilized Nucleic AcidsNanotechnology02 engineering and technologyDNA nanostructuresSubstrate (electronics)Microscopy Atomic Force01 natural sciencesBiochemistryAnalytical Chemistrychemistry.chemical_compoundHoneycombNanotechnologyDNA origamiDNA nanotechnologynanomanipulationElectrical measurementsSulfhydryl CompoundsElectrodesta218dielectrophoresista214ta114Physics010401 analytical chemistryElectric ConductivityDNAEquipment DesignDielectrophoresis021001 nanoscience & nanotechnologySilicon Dioxide0104 chemical sciencesNanostructuresChemistryNanolithographychemistryElectrical engineeringelectrical propertiesnanofabricationGold0210 nano-technologyBiotechnologyELECTROPHORESIS
researchProduct