Search results for "nanotechnologie"

showing 10 items of 211 documents

Simulations of a Graphene Nanoflake as a Nanovector To Improve ZnPc Phototherapy Toxicity: From Vacuum to Cell Membrane

2017

International audience; We propose a new approach to improving photodynamic therapy (PDT) by transporting zinc phthalocyanine (ZnPc) in biological systems via a graphene nanoflake, to increase its targeting. Indeed, by means of time-dependent density functional theory simulations, we show that the ZnPc molecule in interaction with a graphene nanoflake preserves its optical properties not only in a vacuum but also in water. Moreover, molecular dynamic simulations demonstrate that the graphene nanoflake/ZnPc association, as a carrier, permits one to stabilize the ZnPc/graphene nanoflake system on the cellular membrane, which was not possible when using ZnPc alone. We finally conclude that the…

Cellular membraneIndolesMaterials scienceVacuum[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNanotechnology02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials010402 general chemistry01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materialslaw.inventionCell membraneMolecular dynamicslawCell Line TumorOrganometallic CompoundsmedicineHumansMoleculeGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Zinc phthalocyanine[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]Photosensitizing AgentsGrapheneCell Membrane021001 nanoscience & nanotechnologyNanostructures0104 chemical sciencesmedicine.anatomical_structurePhotochemotherapyGraphiteDensity functional theory0210 nano-technology
researchProduct

Unsupervised image processing scheme for transistor photon emission analysis in order to identify defect location

2015

International audience; The study of the light emitted by transistors in a highly scaled complementary metal oxide semiconductor (CMOS) integrated circuit (IC) has become a key method with which to analyze faulty devices, track the failure root cause, and have candidate locations for where to start the physical analysis. The localization of defective areas in IC corresponds to a reliability check and gives information to the designer to improve the IC design. The scaling of CMOS leads to an increase in the number of active nodes inside the acquisition area. There are also more differences between the spot’s intensities. In order to improve the identification of all of the photon emission sp…

Computer scienceImage processing[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing02 engineering and technologyIntegrated circuitIntegrated circuit design01 natural scienceslaw.inventionlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringComputer visionElectrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010302 applied physicsSignal processingNoise (signal processing)business.industryPattern recognitionImage segmentationThresholdingAtomic and Molecular Physics and OpticsComputer Science ApplicationsCMOS[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics020201 artificial intelligence & image processingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs)

2015

International audience; Cavity-resonator-integrated guided-mode resonance filters (CRIGFs) are optical filters based on weak coupling by a grating between a free-space propagating optical mode and a guided mode, like guided-mode resonance filters (GMRFs). As compared to GMRFs they offer narrowband reflection with small aperture and high angular acceptance. We report experimental characterization and theoretical modeling of unexpected high-order reflected modes in such devices. Using coupled-mode modeling and moiré analysis we provide physical insight on key mechanisms ruling CRIGF properties. This model could serve as a simple and efficient framework to design new reflectors with tailored s…

CouplingPhysicsGuided-mode resonancebusiness.industryResonanceGratingCoupled mode theoryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsResonatorNarrowbandOptics[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputer Vision and Pattern Recognition[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsOptical filterbusiness
researchProduct

Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes

2021

International audience; A two-dimensional cross-like phoxonic crystal (PxC) model is proposed, which exhibits simultaneously large complete photonic crystal (PtC) and phononic crystal (PnC) bandgaps. The most salient trait of the structure is the wide range of geometrical parameters compatible with large complete bandgaps. After geometrical optimization, photonic and phononic bandgaps with gap-to-midgap ratios of 11.5% and 90.7% are obtained, respectively. These values are close to the best topology-optimized reported values but are obtained with simple shapes compatible with nanoscale fabrication technology. These characteristics make the convex–concave topology a promising candidate for P…

CouplingPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]PhotonCondensed matter physicsPhononbusiness.industryGeneral Physics and AstronomyPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFinite element method[SPI.MAT]Engineering Sciences [physics]/MaterialsCrystalSuperposition principle0103 physical sciencesPhotonics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusinessPhotonic crystal
researchProduct

Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas

2020

We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…

Detection sensitivityMaterials sciencelcsh:BiotechnologyCesium compoundsPhysics::Optics02 engineering and technologyDielectricPerovskiteLead compoundsperovskite solar cells01 natural sciences7. Clean energyCondensed Matter::Materials Sciencenanocrystalslcsh:TP248.13-248.650103 physical sciencesEnhanced absorptionSemiconductor quantum dotsElectronic transitionGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsAbsorption (electromagnetic radiation)perovskitePerovskite (structure)010302 applied physicsScatteringbusiness.industryGeneral Engineering021001 nanoscience & nanotechnologylcsh:QC1-999NanocrystalsNear field effectNanocrystalAtomic electron transitionQuantum dotOptoelectronicsTitanium dioxideAntennasDark-field scatteringsLow cost approachPhotonics0210 nano-technologybusinessOrganic moleculeslcsh:PhysicsBromine compoundsEmission enhancement
researchProduct

Experimental realization of a pillared metasurface for flexural wave focusing

2021

International audience; A metasurface is an array of subwavelength units with modulated wave responses that show great potential for the control of refractive/reflective properties in compact functional devices. In this work, we propose an elastic metasurface consisting of a line of pillars with gradient heights, erected on a homogeneous plate. The change in the resonant frequencies associated with the height gradient allows us to achieve transmitted phase response covering a range of 2π, while the amplitude response remains at a relatively high level. We employ the pillared units to design a focusing metasurface and compare the properties of the focal spots through simulation and experimen…

DiffractionMaterials scienceFabricationQC1-999Physics::Optics02 engineering and technologyInterference (wave propagation)01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsOpticsRobustness (computer science)0103 physical sciencesPhase responseFocal lengthGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010302 applied physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]business.industryPhysicsGeneral Engineering021001 nanoscience & nanotechnologyTransverse planeFull width at half maximum0210 nano-technologybusinessTP248.13-248.65Biotechnology
researchProduct

Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure

2017

International audience; Acousto-optical modulators usually rely on coherent diffraction of light by a moving acoustic wave, leading to bulky devices with a long interaction length. We propose a subwavelength acousto-optical structure that instead relies on a double resonance to achieve strong modulation at near-infrared wavelengths. A periodic array of metal ridges on a piezoelectric substrate defines cavities that create a resonant dip in the optical transmission spectrum. The ridges simultaneously support large flexural vibrations when resonantly excited by a radio-frequency signal, effectively deforming the cavities and leading to strongly nonlinear acousto-optical modulation. The nano-o…

DiffractionMaterials sciencePhysics::Optics02 engineering and technology01 natural sciencesSignal[SPI.MAT]Engineering Sciences [physics]/MaterialsOptics0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFano resonanceAcoustic wave021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthSurface waveModulationOptoelectronicsPhotonics0210 nano-technologybusiness
researchProduct

Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon

2011

International audience; The experimental observation of a one-dimensional evanescent wave supported by a 90◦ metal edge is reported. Through a measurement of in-plane momenta, we clearly demonstrate the dimensional character of this surface wave and show that it is non-radiative in the superstrate. Excitation conditions, lateral extension and polarization properties of this wave are discussed. Finally, we explore the effect of the surrounding dielectric medium and demonstrate that a single edge can sustain distinct excitations.

DiffractionPhysicsTotal internal reflectionbusiness.industrySurface plasmon02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesElectromagnetic radiationSurface plasmon polaritonAtomic and Molecular Physics and OpticsOpticsSurface wave0103 physical sciences[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusiness
researchProduct

Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators

2012

International audience; In this paper, we experimentally show the effect of waveguide discontinuity on the propagation of the surface plasmon in metal stripes and tapered terminations. Dual-plane leakage microscopy and near-field microscopy were performed on Au stripes with varied widths to imag29e the surface plasmon intensity distribution in real and reciprocal spaces. We unambiguously demonstrate that edge diffraction is the limiting process determining the cutoff conditions of the surface plasmon mode. Finally, we determine the optimal tapered geometry leading to the highest transmission.

DiffractionTotal internal reflectionMaterials sciencebusiness.industrySurface plasmonNanophotonicsPhysics::OpticsStatistical and Nonlinear Physics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurface plasmon polaritonAtomic and Molecular Physics and Opticslaw.inventionOpticslaw0103 physical sciencesNear-field scanning optical microscope[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusinessWaveguideLocalized surface plasmon
researchProduct

Quantum computing thanks to Bianchi groups

2018

It has been shown that the concept of a magic state (in universal quantum computing: uqc) and that of a minimal informationally complete positive operator valued measure: MIC-POVMs (in quantum measurements) are in good agreement when such a magic state is selected in the set of non-stabilizer eigenstates of permutation gates with the Pauli group acting on it [1]. Further work observed that most found low-dimensional MICs may be built from subgroups of the modular group PS L(2, Z) [2] and that this can be understood from the picture of the trefoil knot and related 3-manifolds [3]. Here one concentrates on Bianchi groups PS L(2, O10) (with O10 the integer ring over the imaginary quadratic fie…

Discrete mathematics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]010308 nuclear & particles physicsPhysicsQC1-999010103 numerical & computational mathematics01 natural sciencesRing of integers[SPI.MAT]Engineering Sciences [physics]/MaterialsModular group0103 physical sciencesPauli groupQuadratic field0101 mathematics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsQuantumEigenvalues and eigenvectorsTrefoil knotQuantum computerMathematics
researchProduct