Search results for "nanotoxicology"
showing 10 items of 14 documents
Safety assessment of nanoparticles for drug delivery by means of classic in vitro assays and beyond.
2016
Nanoparticles (NPs) are particularly promising tools for drug delivery and targeting, but to date, only a relatively small number of nanoscale drug delivery systems have been officially approved for drug therapy. Therapeutic NPs are designed for human use and consequently have to withstand critical toxicological analysis, which plays a pivotal role in the decision on the future practical realization of the respective drug-delivery concepts. Nanotoxicology is still a maturing discipline that often lacks profound analysis of non-acute, sub-lethal effects. Areas covered: In this review, a representative selection of current in vitro assays for cell culture-based assessment of nanotoxicity is d…
Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: New perspectives for antibiodeter…
2017
Background Nanotechnologies are currently revolutionizing the world around us, improving the quality of our lives thanks to a multitude of applications in several areas including the environmental preservation, with the biodeterioration phenomenon representing one of the major concerns. Results In this study, an innovative nanomaterial consisting of graphene nanoplatelets decorated by zinc oxide nanorods (ZNGs) was tested for the ability to inhibit two different pathogens belonging to bacterial genera frequently associated with nosocomial infections as well as biodeterioration phenomenon: the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa. A time- and dose-…
Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication
2020
Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen
Toxicity of fullerene (C60) to sediment-dwelling invertebrate Chironomus riparius larvae
2011
An environmentally realistic method to test fullerene (C(60) ) toxicity to the benthic organism Chironomus riparius was created by allowing suspended fullerenes to settle down, making a layer on top of the sediment. To test the hypothesis that higher food concentrations will reduce toxic responses, two food concentrations were tested (0.5 and 0.8% Urtica sp.) in sediment containing fullerene masses of 0.36 to 0.55 mg/cm(2) using a 10-d chronic test. In the 0.5% food level treatments, there were significant differences in all growth-related endpoints compared with controls. Fewer effects were observed for the higher food treatment. Fullerene agglomerates were observed by electron microscopy …
A screening study on the fate of fullerenes (nC60) and their toxic implications in natural freshwaters
2013
Increasing usage of fullerenes (C60) increases their opportunities to be released into the environment. For risk assessment, it is important to understand the environmental fate and ecotoxicological effects of C60. In the present study, fullerene settling was measured during a 1-yr period with 4 different lake waters and an artificial freshwater, and Daphnia magna immobilization and fullerene accumulation was also measured in each of the lake waters. Depending on the characteristics of the lake waters, fullerenes either exhibited extended water stability or settled rapidly; in all waters, there was a fraction that remained stable after 1 yr. Water stability was affected by the quality and m…
Silica Nanoparticles for Insect Pest Control.
2019
To date, control strategies used against insect pest species are based on synthetic insecticide applications. In addition, the efficacy of these treatments could be decreased due to insecticide resistance in insect populations. Also, the irrational use of chemical control strategies has negative consequences of non-target organisms and threatening human health. Designing nanomaterial for pest insect control is a promising alternative to traditional insecticide formulations. In particular, it has been proven that silica nanoparticles have the potential for molecules delivery, release control improvement and also their toxicity as insecticide alone. In this work, we summarized the state of kn…
2018
Hard corona (HC) protein, i.e., the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3-factor interactions inherited in the traditional 3D nanoparticle, HC-dependent bio-nano interactions are often poorly probed and interpreted. Here, the first HC-by-design case study in 2D is demonstrated that sequentially and linearly changes the HC quantity using functionalized graphene oxide (GO) nanosheets. The HC quantity and HC quality are analyzed using NanoDrop and label-free liquid chromatography-mass spectrometry (LC-MS) followed by principal compon…
Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans
2018
[EN] Here we report the toxicological evaluation of mesoporous silica particles (MSPs) in the nematode C. elegans. Specifically, we have investigated the effect of bare micro- (M0) and nano-sized (N0) MSPs, and their corresponding functionalized particles with a starch derivative (Glu-N) (M1 and N1, respectively) on C. elegans ageing parameters. The toxicity of MSPs, their impact on C. elegans lifespan, movement capacity, progeny and ability to survive upon exposure to acute oxidative stress were assessed. This study demonstrated that both size particles assayed (M0 and N0), labeled with rhodamine and monitored through fluorescence microscopy, are ingested by the nematode. Moreover, toxicit…
Determination of the LD50 with the chick embryo chorioallantoic membrane (CAM) assay as a promising alternative in nanotoxicological evaluation
2021
Toxicity tests in rodents are still considered a controversial topic concerning their ethical justifiability. The chick embryo chorioallantoic membrane (CAM) assay may offer a simple and inexpensive alternative. The CAM assay is easy to perform and has low bureaucratic hurdles. At the same time, the CAM assay allows the application of a broad variety of analytical methods in the field of nanotoxicological research. We evaluated the CAM assay as a methodology for the determination of nanotoxicity. Therefore we calculated the median lethal dose (LD50), performed in vivo microscopy and immunohistochemistry to identify organ-specific accumulation profiles, potential organ damage, and the kineti…
Degradable cationic nanohydrogel particles for stimuli-responsive release of siRNA.
2014
Well-defined nanogels have become quite attractive as safe and stable carriers for siRNA delivery. However, to avoid nanoparticle accumulation, they need to provide a stimuli-responsive degradation mechanism that can be activated at the payload's site of action. In this work, the synthetic concept for generating well-defined nanohydrogel particles is extended to incorporate disulfide cross-linkers into a cationic nanonetwork for redox-triggered release of oligonucleotide payload as well as nanoparticle degradation under reductive conditions of the cytoplasm. Therefore, a novel disulfide-modified spermine cross-linker is designed that both allows disassembly of the nanogel as well as removal…