Search results for "nervous system"

showing 10 items of 3271 documents

Sensory disturbances of buccal and lingual nerve by muscle compression: a case report and review of the literature

2016

Introduction Several studies on cadavers dissection have shown that collateral branches of the trigeminal nerve cross muscle bundles on their way, being a possible etiological factor of some nerve disturbances. Case Report A 45-year-old man attended to the Temporomandibular Joint and Orofacial Pain Unit of the Master of Oral Surgery and Implantology in Hospital Odontològic of Barcelona University, referring tingling in the left hemifacial región and ipsilateral lingual side for one year, with discomfort when shaving or skin compression. Discussion Several branches of the trigeminal nerve follow a path through the masticatory muscles, being the lingual nerve and buccal nerve the most involve…

0301 basic medicineNervous systemOrofacial painNeuràlgia del trigeminNervi trigeminTrigeminal nerveCase ReportOdontologíaMalalties de la bocaOrofacial pain-TMJD03 medical and health sciencesstomatognathic systemCadavermedicineSistema nerviósGeneral Dentistrymedicine.cranial_nerveLingual nerveTrigeminal nervebusiness.industryAnatomy:CIENCIAS MÉDICAS [UNESCO]Ciencias de la saludMasticatory forceTemporomandibular jointDissectionstomatognathic diseasesmedicine.anatomical_structureMouth diseasesUNESCO::CIENCIAS MÉDICAS030101 anatomy & morphologyBuccal nervemedicine.symptombusinessTrigeminal neuralgia
researchProduct

The Elastin-Derived Peptide VGVAPG Does Not Activate the Inflammatory Process in Mouse Cortical Astrocytes In Vitro.

2019

Abstract During vascular aging or in pathological conditions in humans, elastin is degraded and its by-products, the elastin-derived peptides (EDPs), enter the blood circulation. EDPs may be detected in the serum of healthy subjects or people who suffered a stroke. Moreover, recent evidence suggests a potential role of inflammatory mechanisms in neurological conditions, which are usually not categorized as inflammatory. Therefore, the present in vitro study was conducted to investigate the impact of the VGVAPG peptide on the activation of inflammatory process in mouse primary astrocytes, which were maintained in phenol red-free DMEM/F12 supplemented with 10% fetal bovine serum. The cells we…

0301 basic medicineNervous systemSOD1Primary Cell CultureGene ExpressionPeptideInflammationToxicologyRosiglitazone03 medical and health sciencesMice0302 clinical medicinemedicineAnimalschemistry.chemical_classificationInflammationbiologyChemistryGeneral NeuroscienceIn vitroCell biologyElastinElastin-derived peptides030104 developmental biologymedicine.anatomical_structureVGVAPGAstrocytesbiology.proteinOriginal Articlemedicine.symptomInflammation MediatorsPeptidesAstrocyteElastinOligopeptides030217 neurology & neurosurgeryFetal bovine serumAstrocyteNeurotoxicity research
researchProduct

A Systematic Nomenclature for the Drosophila Ventral Nerve Cord.

2020

Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor…

0301 basic medicineNervous systemanatomytectulumanimal structures1.1 Normal biological development and functioningneuropilSensory systemhemilineageArticle03 medical and health sciences0302 clinical medicineTerminology as TopicmedicineNeuropilPsychologyAnimalsCell LineageInvertebrateontologyNomenclatureNeuronsNeurology & NeurosurgerybiologyGeneral NeurosciencefungiNeurosciencesCommissuremotorneuronbiology.organism_classificationNeuromeretractGanglia Invertebrate030104 developmental biologymedicine.anatomical_structureDrosophila melanogasterVentral nerve cordNeurologicalGangliacommissureinsectCognitive SciencesDrosophila melanogasterNerve NetNeuroscience030217 neurology & neurosurgeryneuromereNeuron
researchProduct

The Action of Di-(2-Ethylhexyl) Phthalate (DEHP) in Mouse Cerebral Cells Involves an Impairment in Aryl Hydrocarbon Receptor (AhR) Signaling

2018

Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in various plastic compounds, such as polyvinyl chloride (PVC), and products including baby toys, packaging films and sheets, medical tubing, and blood storage bags. Epidemiological data suggest that phthalates increase the risk of the nervous system disorders; however, the impact of DEHP on the brain cells and the mechanisms of its action have not been clarified. The aim of the present study was to investigate the effects of DEHP on production of reactive oxygen species (ROS) and aryl hydrocarbon receptor (AhR), as well as Cyp1a1 and Cyp1b1 mRNA and protein expression in primary mouse cortical neurons and glial cells in the in vit…

0301 basic medicineNervous systemendocrine systemCYP1B1Gene ExpressionNeocortexToxicologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDiethylhexyl PhthalateGliaCytochrome P-450 CYP1A1medicineAnimalsCyp1a1RNA MessengerCells Culturedchemistry.chemical_classificationNeuronsReactive oxygen speciesMessenger RNADose-Response Relationship DrugbiologyDEHPChemistryGeneral NeuroscienceAhRPhthalateROSrespiratory systemAryl hydrocarbon receptorIn vitroCell biology030104 developmental biologymedicine.anatomical_structureReceptors Aryl HydrocarbonCytochrome P-450 CYP1B1biology.proteinOriginal ArticleSignal transductionReactive Oxygen SpeciesNeuroglia030217 neurology & neurosurgerySignal TransductionNeurotoxicity Research
researchProduct

Lactate as a Metabolite and a Regulator in the Central Nervous System

2016

More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even invol…

0301 basic medicineNervous systemlactate transporterCentral nervous systemReviewBiologyBlood–brain barrierlactate receptorsNeuroprotectionCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineSettore BIO/10 - Biochimicalactate receptormedicineAnimalsHumanslactate transportersPhysical and Theoretical ChemistryReceptorExerciselcsh:QH301-705.5Molecular BiologySpectroscopyOrganic ChemistryNeurodegenerationlactic acidBrainGeneral MedicineMetabolismblood-brain barriermedicine.diseaseComputer Science ApplicationsCitric acid cycle030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Biochemistrybrain metabolismActic acidexercise and lactateEnergy MetabolismNeuroscience030217 neurology & neurosurgerySignal Transductionactic acid; brain metabolism; lactate transporters; blood-brain barrier; lactate receptors; exercise and lactate
researchProduct

Semaphorins in Adult Nervous System Plasticity and Disease

2021

Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neuro…

0301 basic medicineNervous systemsemaphorinsanimal structuresautismNeurosciences. Biological psychiatry. NeuropsychiatryReviewHippocampal formationBiologymultiple sclerosisExtracellular matrix03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineSemaphorinNeuroplasticitymedicineMultiple sclerosisPerineuronal netNeurogenesisCell Biologymedicine.diseaseschizophrenia030104 developmental biologymedicine.anatomical_structurenervous systemplasticityembryonic structuresAlzheimer’s disease; autism; epilepsy; multiple sclerosis; perineuronal net; plasticity; schizophrenia; semaphorinsepilepsysense organsperineuronal netbiological phenomena cell phenomena and immunityNeuroscienceAlzheimer’s disease030217 neurology & neurosurgeryNeuroscienceRC321-571
researchProduct

Allopregnanolone augments epileptiform activity of an in-vitro mouse hippocampal preparation in the first postnatal week.

2019

Abstract In the immature brain the neurotransmitter γ-amino butyric acid (GABA) mediates a membrane depolarization and can contribute to both, inhibition and excitation. Therefore the consequences of a positive modulation of GABA(A) receptors by neurosteroids on epileptiform activity are hard to predict. In order to analyze whether neurosteroids attenuate or exaggerate epileptiform activity in the immature brain, we investigated the effect of the neurosteroid allopregnanolone on epileptiform activity in an in-toto hippocampus preparation of early postnatal mice (postnatal days 4–7) using field potential recordings. These in-vitro experiments revealed that 0.5 μmol/L allopregnanolone had no …

0301 basic medicineNeuroactive steroidPatch-Clamp TechniquesPregnanoloneHippocampal formationHippocampusMembrane Potentials03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineAnimalsPicrotoxinIctalGABA-A Receptor AntagonistsNeurotransmitterGABAA receptorAllopregnanoloneDepolarizationnervous system diseases030104 developmental biologynervous systemNeurologychemistryGABAergicNeurology (clinical)Neuroscience030217 neurology & neurosurgeryEpilepsy research
researchProduct

Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo.

2021

17 páginas, 7 figuras.

0301 basic medicineNeurobiologia del desenvolupamentRostral migratory streamNeurogenesisSubventricular zoneStem cellsAdult neurogenesis03 medical and health sciencesMiceOlfactory bulb0302 clinical medicineCalretininNeural Stem CellsInterneuronsmedicineAnimalsDevelopmental neurobiologyNeural stem cellsNeuronsbiologyNeurogenesisCell DifferentiationCell BiologyOlfactory BulbNeural stem cellDoublecortinCell biologyOlfactory bulb030104 developmental biologymedicine.anatomical_structurenervous systemSynapsesbiology.proteinMolecular MedicineNeuronNeuNCèl·lules mare030217 neurology & neurosurgeryDevelopmental BiologyStem cells (Dayton, Ohio)REFERENCES
researchProduct

New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation

2018

AbstractThe development and maturation of cortical circuits relies on the coordinated actions of long and short range axonal guidance cues. In this regard, the class 3 semaphorins and their receptors have been seen to be involved in the development and maturation of the hippocampal connections. However, although the role of most of their family members have been described, very few data about the participation of Semaphorin 3E (Sema3E) and its receptor PlexinD1 during the development and maturation of the entorhino-hippocampal (EH) connection are available. In the present study, we focused on determining their roles both during development and in adulthood. We determined a relevant role for…

0301 basic medicineNeurobiologia del desenvolupamentScienceHippocampusNerve Tissue ProteinsSemaphorinsBiologyHippocampal formationHippocampusArticle03 medical and health sciencesMice0302 clinical medicineSemaphorinmedicineAnimalsDevelopmental neurobiologyProgenitor cellReceptorCells CulturedGlycoproteinsNeuronsMultidisciplinaryMembrane GlycoproteinsHippocampus properDentate gyrusQRIntracellular Signaling Peptides and ProteinsGene Expression Regulation DevelopmentalMembrane ProteinsProteinsEmbryonic stem cellCytoskeletal Proteins030104 developmental biologymedicine.anatomical_structurenervous systemMutationMedicineNeuroscienceProteïnes030217 neurology & neurosurgerySignal Transduction
researchProduct

2020

GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1−/− mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage …

0301 basic medicineNeurofilamentAtaxiabiologybusiness.industryCentral nervous systemGeneral MedicineMicrogliosismedicine.diseaseAstrogliosisCell biology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureKnockout mousemedicineAmyloid precursor proteinbiology.proteinmedicine.symptomSphingomyelinbusiness030217 neurology & neurosurgeryJournal of Clinical Medicine
researchProduct