Search results for "neuraalilaskenta"
showing 5 items of 5 documents
Extreme minimal learning machine: Ridge regression with distance-based basis
2019
The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an addit…
Vectors of Pairwise Item Preferences
2019
Neural embedding has been widely applied as an effective category of vectorization methods in real-world recommender systems. However, its exploration of users’ explicit feedback on items, to create good quality user and item vectors is still limited. Existing neural embedding methods only consider the items that are accessed by the users, but neglect the scenario when a user gives high or low rating to a particular item. In this paper, we propose Pref2Vec, a method to generate vector representations of pairwise item preferences, users and items, which can be directly utilized for machine learning tasks. Specifically, Pref2Vec considers users’ pairwise item preferences as elementary units. …
A Survey of Continuous-Time Computation Theory
1997
Motivated partly by the resurgence of neural computation research, and partly by advances in device technology, there has been a recent increase of interest in analog, continuous-time computation. However, while special-case algorithms and devices are being developed, relatively little work exists on the general theory of continuous- time models of computation. In this paper, we survey the existing models and results in this area, and point to some of the open research questions. Final Draft peerReviewed
Quantum Hopfield Model
2020
We find the free-energy in the thermodynamic limit of a one-dimensional XY model associated to a system of N qubits. The coupling among the &sigma
Exploring Oscillatory Dysconnectivity Networks in Major Depression During Resting State Using Coupled Tensor Decomposition
2022
Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate the dysconnectivity networks characterized by spatio-temporal-spectral modes of covariation in MDD using resting electroencephalography. The phase lag index is used to calculate the functional connectivity within each time window at each frequency bin. Then, two adjacency tensors with the dimension of time frequency connectivity subject are constr…