6533b7d0fe1ef96bd125b771

RESEARCH PRODUCT

Vectors of Pairwise Item Preferences

Gaurav PandeyShuaiqiang WangYi ChangZhaochun Ren

subject

Computer scienceneuraalilaskentaInitialization02 engineering and technology010501 environmental sciencesRecommender systemMachine learningcomputer.software_genre01 natural sciences0202 electrical engineering electronic engineering information engineeringvectorizationPreference (economics)Independence (probability theory)0105 earth and related environmental sciencesbusiness.industryComputer Science::Information RetrievalsuosittelujärjestelmätConditional probabilityneural embeddingVectorization (mathematics)Benchmark (computing)020201 artificial intelligence & image processingPairwise comparisonArtificial intelligencebusinesscomputer

description

Neural embedding has been widely applied as an effective category of vectorization methods in real-world recommender systems. However, its exploration of users’ explicit feedback on items, to create good quality user and item vectors is still limited. Existing neural embedding methods only consider the items that are accessed by the users, but neglect the scenario when a user gives high or low rating to a particular item. In this paper, we propose Pref2Vec, a method to generate vector representations of pairwise item preferences, users and items, which can be directly utilized for machine learning tasks. Specifically, Pref2Vec considers users’ pairwise item preferences as elementary units. It vectorizes users’ pairwise preferences by maximizing the likelihood estimation of the conditional probability of each pairwise item preference given another one. With the pairwise preference matrix and the generated preference vectors, the vectors of users are yielded by minimizing the difference between users’ observed preferences and the product of the user and preference vectors. Similarly, the vectorization of items can be achieved with the user-item rating matrix and the users vectors. We conducted extensive experiments on three benchmark datasets to assess the quality of item vectors and the initialization independence of the user and item vectors. The utility of our vectorization results is shown by the recommendation performance achieved using them. Our experimental results show significant improvement over state-of-the-art baselines. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-201912135255