0000000000132938

AUTHOR

Shuaiqiang Wang

showing 20 related works from this author

Vectors of Pairwise Item Preferences

2019

Neural embedding has been widely applied as an effective category of vectorization methods in real-world recommender systems. However, its exploration of users’ explicit feedback on items, to create good quality user and item vectors is still limited. Existing neural embedding methods only consider the items that are accessed by the users, but neglect the scenario when a user gives high or low rating to a particular item. In this paper, we propose Pref2Vec, a method to generate vector representations of pairwise item preferences, users and items, which can be directly utilized for machine learning tasks. Specifically, Pref2Vec considers users’ pairwise item preferences as elementary units. …

Computer scienceneuraalilaskentaInitialization02 engineering and technology010501 environmental sciencesRecommender systemMachine learningcomputer.software_genre01 natural sciences0202 electrical engineering electronic engineering information engineeringvectorizationPreference (economics)Independence (probability theory)0105 earth and related environmental sciencesbusiness.industryComputer Science::Information RetrievalsuosittelujärjestelmätConditional probabilityneural embeddingVectorization (mathematics)Benchmark (computing)020201 artificial intelligence & image processingPairwise comparisonArtificial intelligencebusinesscomputer
researchProduct

User session level diverse reranking of search results

2018

Most Web search diversity approaches can be categorized as Document Level Diversification (DocLD), Topic Level Diversification (TopicLD) or Term Level Diversification (TermLD). DocLD selects the relevant documents with minimal content overlap to each other. It does not take the coverage of query subtopics into account. TopicLD solves this by modeling query subtopics explicitly. However, the automatic mining of query subtopics is difficult. TermLD tries to cover as many query topic terms as possible, which reduces the task of finding a query's subtopics into finding a set of representative topic terms. In this paper, we propose a novel User Session Level Diversification (UserLD) approach bas…

ta113InternetInformation retrievalWeb search queryuser sessionComputer scienceCognitive NeuroscienceInformationSystems_INFORMATIONSTORAGEANDRETRIEVAL02 engineering and technologyGraphComputer Science Applicationssearch result rerankingQuery expansionsession graphArtificial IntelligenceWeb query classification020204 information systems0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)020201 artificial intelligence & image processingtiedonhakuhakutuloksetsearch result diversification
researchProduct

Challenges of Serendipity in Recommender Systems

2016

Most recommender systems suggest items similar to a user profile, which results in boring recommendations limited by user preferences indicated in the system. To overcome this problem, recommender systems should suggest serendipitous items, which is a challenging task, as it is unclear what makes items serendipitous to a user and how to measure serendipity. The concept is difficult to investigate, as serendipity includes an emotional dimension and serendipitous encounters are very rare. In this paper, we discuss mentioned challenges, review definitions of serendipity and serendipity-oriented evaluation metrics. The goal of the paper is to guide and inspire future efforts on serendipity in r…

haasteet (ongelmat)ta113Computer scienceSerendipitysuosittelujärjestelmätserendipitychallenges02 engineering and technologyRecommender systemunexpectednessnoveltyevaluation metricsWorld Wide Webrelevanssi020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingrelevancerecommender systemsProceedings of the 12th International Conference on Web Information Systems and Technologies
researchProduct

How does serendipity affect diversity in recommender systems? A serendipity-oriented greedy algorithm

2018

Most recommender systems suggest items that are popular among all users and similar to items a user usually consumes. As a result, the user receives recommendations that she/he is already familiar with or would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should suggest novel, relevant and unexpected i.e., serendipitous items. In this paper, we propose a serendipity-oriented, reranking algorithm called a serendipity-oriented greedy (SOG) algorithm, which improves serendipity of recommendations through feature diversification and helps overcome the overspecialization problem. To evaluate our algorithm, we employed the only publicly available datase…

Computer science02 engineering and technologyRecommender systemDiversification (marketing strategy)Machine learningcomputer.software_genreTheoretical Computer SciencenoveltySingular value decompositionalgoritmit0202 electrical engineering electronic engineering information engineeringFeature (machine learning)serendipity-2018Greedy algorithmlearning to rankNumerical AnalysisSerendipitybusiness.industrysuosittelujärjestelmät020206 networking & telecommunicationsserendipityPopularityunexpectednessComputer Science ApplicationsComputational MathematicsComputational Theory and MathematicsRanking020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerarviointiSoftware
researchProduct

Listwise Collaborative Filtering

2015

Recently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-art performances by estimating a preference ranking of items for each user rather than estimating the absolute ratings on unrated items (as conventional rating-oriented CF algorithms do). In this paper, we propose a new ranking-oriented CF algorithm, called ListCF. Following the memory-based CF framework, ListCF directly predicts a total order of items for each user based on similar users' probability distributions over permutations of the items, and thus differs from previous ranking-oriented memory-based CF algorithms that focus on predicting th…

ta113business.industryComputer scienceRecommender systemMachine learningcomputer.software_genreRankingcollaborative filteringBenchmark (computing)Collaborative filteringProbability distributionPairwise comparisonData miningArtificial intelligencerecommender systemsbusinessFocus (optics)computerranking-oriented collaborative filtering
researchProduct

Social Collaborative Viewpoint Regression with Explainable Recommendations

2017

A recommendation is called explainable if it not only predicts a numerical rating for an item, but also generates explanations for users' preferences. Most existing methods for explainable recommendation apply topic models to analyze user reviews to provide descriptions along with the recommendations they produce. So far, such methods have neglected user opinions and influences from social relations as a source of information for recommendations, even though these are known to improve the rating prediction. In this paper, we propose a latent variable model, called social collaborative viewpoint regression (sCVR), for predicting item ratings based on user opinions and social relations. To th…

ta113Topic modelInformation retrievalComputer sciencetopic modeling02 engineering and technologyRecommender systemtrusted social relationsViewpointsSocial relationRegression020204 information systemsBenchmark (surveying)0202 electrical engineering electronic engineering information engineeringuser comment analysis020201 artificial intelligence & image processingrecommender systemsTupleLatent variable modelProceedings of the Tenth ACM International Conference on Web Search and Data Mining
researchProduct

Listwise Recommendation Approach with Non-negative Matrix Factorization

2018

Matrix factorization (MF) is one of the most effective categories of recommendation algorithms, which makes predictions based on the user-item rating matrix. Nowadays many studies reveal that the ultimate goal of recommendations is to predict correct rankings of these unrated items. However, most of the pioneering efforts on ranking-oriented MF predict users’ item ranking based on the original rating matrix, which fails to explicitly present users’ preference ranking on items and thus might result in some accuracy loss. In this paper, we formulate a novel listwise user-ranking probability prediction problem for recommendations, that aims to utilize a user-ranking probability matrix to predi…

Computer sciencebusiness.industrysuosittelujärjestelmätStochastic matrixRecommender systemMissing dataMachine learningcomputer.software_genreMatrix decompositionNon-negative matrix factorizationMatrix (mathematics)rankingRankingcollaborative filteringalgoritmitProbability distributionArtificial intelligencebusinesscomputer
researchProduct

A survey of serendipity in recommender systems

2016

We summarize most efforts on serendipity in recommender systems.We compare definitions of serendipity in recommender systems.We classify the state-of-the-art serendipity-oriented recommendation algorithms.We review methods to assess serendipity in recommender systems.We provide the future directions of serendipity in recommender systems. Recommender systems use past behaviors of users to suggest items. Most tend to offer items similar to the items that a target user has indicated as interesting. As a result, users become bored with obvious suggestions that they might have already discovered. To improve user satisfaction, recommender systems should offer serendipitous suggestions: items not …

Measure (data warehouse)Information Systems and ManagementInformation retrievalComputer scienceSerendipityNovelty02 engineering and technologyRecommender systemManagement Information SystemsWorld Wide WebArtificial Intelligence020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingMetric (unit)SoftwareKnowledge-Based Systems
researchProduct

Learning to Rank Images for Complex Queries in Concept-based Search

2018

Concept-based image search is an emerging search paradigm that utilizes a set of concepts as intermediate semantic descriptors of images to bridge the semantic gap. Typically, a user query is rather complex and cannot be well described using a single concept. However, it is less effective to tackle such complex queries by simply aggregating the individual search results for the constituent concepts. In this paper, we propose to introduce the learning to rank techniques to concept-based image search for complex queries. With freely available social tagged images, we first build concept detectors by jointly leveraging the heterogeneous visual features. Then, to formulate the image relevance, …

Theoretical computer scienceCognitive Neuroscience02 engineering and technologyfactorization machineRanking (information retrieval)Set (abstract data type)Artificial Intelligence020204 information systems0202 electrical engineering electronic engineering information engineeringRelevance (information retrieval)tiedonhakukuvatMathematicslearning to rankta113InternetConcept searchRank (computer programming)kuvahakuComputer Science Applicationscomplex query020201 artificial intelligence & image processingLearning to rankPairwise comparisonconcept-based image searchSemantic gapNeurocomputing
researchProduct

Improving Serendipity and Accuracy in Cross-Domain Recommender Systems

2017

Cross-domain recommender systems use information from source domains to improve recommendations in a target domain, where the term domain refers to a set of items that share attributes and/or user ratings. Most works on this topic focus on accuracy but disregard other properties of recommender systems. In this paper, we attempt to improve serendipity and accuracy in the target domain with datasets from source domains. Due to the lack of publicly available datasets, we collect datasets from two domains related to music, involving user ratings and item attributes. We then conduct experiments using collaborative filtering and content-based filtering approaches for the purpose of validation. Ac…

Focus (computing)data collectionInformation retrievalData collectionSerendipityComputer sciencesuosittelujärjestelmätserendipity02 engineering and technologyRecommender systemDomain (software engineering)Term (time)collaborative filtering020204 information systemscross-domain recommendations0202 electrical engineering electronic engineering information engineeringCollaborative filteringcontent-based filtering020201 artificial intelligence & image processingSet (psychology)
researchProduct

Finding Tours for a Set of Interests

2018

This paper addresses a novel tour discovery problem in the domain of travel search. We create a ranking of tours for a set of travel interests, where a tour is a group of city documents and a travel interest is a query. While generating and ranking tours, it is aimed that each interest (from the interest set) is satisfied by at least one city in a tour and the distance traveled to cover the tour is not too large. Firstly, we generate tours for the interest set, by utilizing the available ranking of cities for the individual interests and the distances between the cities. Then, in absence of existing methods directly related to our problem, we devise our novel techniques to calculate ranking…

Set (abstract data type)Information retrievalComputer sciencebusiness.industryWeb applicationbusinessRanking (information retrieval)Domain (software engineering)Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW '18
researchProduct

Cross-Domain Recommendations with Overlapping Items

2016

In recent years, there has been an increasing interest in cross-domain recommender systems. However, most existing works focus on the situation when only users or users and items overlap in different domains. In this paper, we investigate whether the source domain can boost the recommendation performance in the target domain when only items overlap. Due to the lack of publicly available datasets, we collect a dataset from two domains related to music, involving both the users’ rating scores and the description of the items. We then conduct experiments using collaborative filtering and content-based filtering approaches for validation purpose. According to our experimental results, the sourc…

ta113Information retrievaldata collectionComputer sciencesuosittelujärjestelmät02 engineering and technologyDomain (software engineering)020204 information systemscollaborative filtering0202 electrical engineering electronic engineering information engineeringcross-domain recommendationscontent-based filtering020201 artificial intelligence & image processingrecommender systems
researchProduct

The Issue Arena of a Corporate Social Responsibility Crisis : The Volkswagen Case in Twitter

2016

This paper explores the online debate in a corporate social responsibility crisis, where multiple actors communicate through social media, each representing different interests and views pertaining to the crisis. The study utilizes Twitter data relating to the recent case of the falsified Volkswagen diesel emissions that became public in 2015. To better understand the online interaction, use is made of issue arena theory and insights on CSR crises. The focus is on capturing the issue as it evolved over time, the actors and sentiments expressed, and the responses of the organization. The findings show that after the case became public, the emissions issue received massive attention in Twitte…

media_common.quotation_subjectsocial mediaTwittersosiaalinen media050801 communication & media studieskriisiviestintäVolkswagen0508 media and communications0502 economics and businessSocial mediaSociologyta518crisis communicationCrisis communicationmedia_commoncorporate social responsibilitybusiness.industryCompensation (psychology)05 social sciencesSentiment analysisStakeholderAdvertisingPublic relationsmaineenhallintasosiaalinen vastuuissue arenaCorporate social responsibilitybusiness050203 business & managementDiversity (business)ReputationStudies in Media and Communication
researchProduct

CitySearcher: A City Search Engine For Interests

2017

We introduce CitySearcher, a vertical search engine that searches for cities when queried for an interest. Generally in search engines, utilization of semantics between words is favorable for performance improvement. Even though ambiguous query words have multiple semantic meanings, search engines can return diversified results to satisfy different users' information needs. But for CitySearcher, mismatched semantic relationships can lead to extremely unsatisfactory results. For example, the city Sale would incorrectly rank high for the interest shopping because of semantic interpretations of the words. Thus in our system, the main challenge is to eliminate the mismatched semantic relationsh…

Feature engineeringWord embeddingkaupungitComputer scienceInformation needs02 engineering and technologysemanttinen webSemanticscomputer.software_genresearch enginesSearch enginesemantic web020204 information systems0202 electrical engineering electronic engineering information engineeringhakuohjelmatWord2vectowns and citiesta113Information retrievalbusiness.industryRank (computer programming)Semantic searchsuosittelujärjestelmätVertical search020201 artificial intelligence & image processingLearning to rankArtificial intelligencerecommender systemsbusinesscomputerNatural language processing
researchProduct

Linear Feature Extraction for Ranking

2018

We address the feature extraction problem for document ranking in information retrieval. We then propose LifeRank, a Linear feature extraction algorithm for Ranking. In LifeRank, we regard each document collection for ranking as a matrix, referred to as the original matrix. We try to optimize a transformation matrix, so that a new matrix (dataset) can be generated as the product of the original matrix and a transformation matrix. The transformation matrix projects high-dimensional document vectors into lower dimensions. Theoretically, there could be very large transformation matrices, each leading to a new generated matrix. In LifeRank, we produce a transformation matrix so that the generat…

dimension reductionComputer scienceFeature extractionMathematicsofComputing_NUMERICALANALYSISFeature selectiontiedonhakujärjestelmät02 engineering and technologyLibrary and Information SciencesRanking (information retrieval)Matrix (mathematics)Transformation matrix020204 information systemsalgoritmit0202 electrical engineering electronic engineering information engineeringtiedonhakulearning to rankbusiness.industryfeature extractionPattern recognitionkoneoppiminenPattern recognition (psychology)Benchmark (computing)020201 artificial intelligence & image processingLearning to rankArtificial intelligencebusinessInformation Systems
researchProduct

Behavior-based personalization in web search

2016

Personalized search approaches tailor search results to users' current interests, so as to help improve the likelihood of a user finding relevant documents for their query. Previous work on personalized search focuses on using the content of the user's query and of the documents clicked to model the user's preference. In this paper we focus on a different type of signal: We investigate the use of behavioral information for the purpose of search personalization. That is, we consider clicks and dwell time for reranking an initially retrieved list of documents. In particular, we (i) investigate the impact of distributions of users and queries on document reranking; (ii) estimate the relevance …

Information Systems and ManagementComputer Networks and CommunicationsComputer sciencehenkilökohtaistaminenInformationSystems_INFORMATIONSTORAGEANDRETRIEVALtiedonhakujärjestelmät02 engineering and technologyLibrary and Information SciencesPersonalizationRanking (information retrieval)Query expansionkustomointiWeb query classification020204 information systems0202 electrical engineering electronic engineering information engineeringRelevance (information retrieval)tiedonhakupersonointiInternetFocus (computing)Information retrievalWeb search queryPersonalized searchRankinghakupalvelut020201 artificial intelligence & image processingInformation SystemsJournal of the Association for Information Science and Technology
researchProduct

A Hybrid Multigroup Coclustering Recommendation Framework Based on Information Fusion

2015

Collaborative Filtering (CF) is one of the most successful algorithms in recommender systems. However, it suffers from data sparsity and scalability problems. Although many clustering techniques have been incorporated to alleviate these two problems, most of them fail to achieve further significant improvement in recommendation accuracy. First of all, most of them assume each user or item belongs to a single cluster. Since usually users can hold multiple interests and items may belong to multiple categories, it is more reasonable to assume that users and items can join multiple clusters (groups), where each cluster is a subset of like-minded users and items they prefer. Furthermore, most of…

ta113Information retrievalComputer sciencebusiness.industrydata miningRecommender systemcomputer.software_genreTheoretical Computer ScienceInformation fusionKnowledge baseArtificial IntelligenceCollaborative FilteringScalabilityCluster (physics)Collaborative filteringLearning to rankData miningrecommender systemsCluster analysisbusinesscomputercluster analysisACM Transactions on Intelligent Systems and Technology
researchProduct

A Serendipity-Oriented Greedy Algorithm for Recommendations

2017

Most recommender systems suggest items to a user that are popular among all users and similar to items the user usually consumes. As a result, a user receives recommendations that she/he is already familiar with or would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should suggest novel, relevant and unexpected, i.e. serendipitous items. In this paper, we propose a serendipity-oriented algorithm, which improves serendipity through feature diversification and helps overcome the overspecialization problem. To evaluate our algorithm and compare it with others, we employ a serendipity metric that captures each component of serendipity, unlike the most …

ta113SerendipityComputer sciencebusiness.industrysuosittelujärjestelmät020207 software engineeringserendipity02 engineering and technologyalgorithmsunexpectednessnoveltyalgoritmit0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencerecommender systemsGreedy algorithmbusinessGreedy randomized adaptive search procedure
researchProduct

A Cooperative Coevolution Framework for Parallel Learning to Rank

2015

We propose CCRank, the first parallel framework for learning to rank based on evolutionary algorithms (EA), aiming to significantly improve learning efficiency while maintaining accuracy. CCRank is based on cooperative coevolution (CC), a divide-and-conquer framework that has demonstrated high promise in function optimization for problems with large search space and complex structures. Moreover, CC naturally allows parallelization of sub-solutions to the decomposed sub-problems, which can substantially boost learning efficiency. With CCRank, we investigate parallel CC in the context of learning to rank. We implement CCRank with three EA-based learning to rank algorithms for demonstration. E…

ta113Cooperative coevolutionTheoretical computer scienceLearning to RankComputer sciencebusiness.industryRank (computer programming)Genetic ProgrammingEvolutionary algorithmContext (language use)Genetic programmingImmune ProgrammingMachine learningcomputer.software_genreEvolutionary computationComputer Science ApplicationsComputational Theory and MathematicsCooperative CoevolutionInformation RetrievalBenchmark (computing)Learning to rankArtificial intelligencebusinesscomputerInformation SystemsIEEE Transactions on Knowledge and Data Engineering
researchProduct

Ranking-Oriented Collaborative Filtering: A Listwise Approach

2016

Collaborative filtering (CF) is one of the most effective techniques in recommender systems, which can be either rating oriented or ranking oriented. Ranking-oriented CF algorithms demonstrated significant performance gains in terms of ranking accuracy, being able to estimate a precise preference ranking of items for each user rather than the absolute ratings (as rating-oriented CF algorithms do). Conventional memory-based ranking-oriented CF can be referred to as pairwise algorithms. They represent each user as a set of preferences on each pair of items for similarity calculations and predictions. In this study, we propose ListCF, a novel listwise CF paradigm that seeks improvement in bot…

Computer science02 engineering and technologyRecommender systemcomputer.software_genreMachine learningSet (abstract data type)020204 information systems0202 electrical engineering electronic engineering information engineeringCollaborative filteringDivergence (statistics)ranking-oriented collaborative filteringta113business.industryGeneral Business Management and AccountingComputer Science ApplicationsRankingcollaborative filteringBenchmark (computing)Probability distribution020201 artificial intelligence & image processingPairwise comparisonArtificial intelligenceData miningrecommender systemsbusinesscomputerInformation SystemsACM Transactions on Information Systems
researchProduct