6533b828fe1ef96bd1287a53
RESEARCH PRODUCT
Learning to Rank Images for Complex Queries in Concept-based Search
Shuaiqiang WangJun MaJialie ShenZhumin ChenChaoran Cuisubject
Theoretical computer scienceCognitive Neuroscience02 engineering and technologyfactorization machineRanking (information retrieval)Set (abstract data type)Artificial Intelligence020204 information systems0202 electrical engineering electronic engineering information engineeringRelevance (information retrieval)tiedonhakukuvatMathematicslearning to rankta113InternetConcept searchRank (computer programming)kuvahakuComputer Science Applicationscomplex query020201 artificial intelligence & image processingLearning to rankPairwise comparisonconcept-based image searchSemantic gapdescription
Concept-based image search is an emerging search paradigm that utilizes a set of concepts as intermediate semantic descriptors of images to bridge the semantic gap. Typically, a user query is rather complex and cannot be well described using a single concept. However, it is less effective to tackle such complex queries by simply aggregating the individual search results for the constituent concepts. In this paper, we propose to introduce the learning to rank techniques to concept-based image search for complex queries. With freely available social tagged images, we first build concept detectors by jointly leveraging the heterogeneous visual features. Then, to formulate the image relevance, we explicitly model the individual weight of each constituent concept in a complex query. The dependence among constituent concepts, as well as the relatedness between query and non-query concepts, are also considered through modeling the pairwise concept correlations in a factorization way. Finally, we train our model to directly optimize the image ranking performance for complex queries under a pairwise learning to rank framework. Extensive experiments on two benchmark datasets well verified the promise of our approach. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | Neurocomputing |