0000000000142072

AUTHOR

Zhumin Chen

showing 4 related works from this author

User session level diverse reranking of search results

2018

Most Web search diversity approaches can be categorized as Document Level Diversification (DocLD), Topic Level Diversification (TopicLD) or Term Level Diversification (TermLD). DocLD selects the relevant documents with minimal content overlap to each other. It does not take the coverage of query subtopics into account. TopicLD solves this by modeling query subtopics explicitly. However, the automatic mining of query subtopics is difficult. TermLD tries to cover as many query topic terms as possible, which reduces the task of finding a query's subtopics into finding a set of representative topic terms. In this paper, we propose a novel User Session Level Diversification (UserLD) approach bas…

ta113InternetInformation retrievalWeb search queryuser sessionComputer scienceCognitive NeuroscienceInformationSystems_INFORMATIONSTORAGEANDRETRIEVAL02 engineering and technologyGraphComputer Science Applicationssearch result rerankingQuery expansionsession graphArtificial IntelligenceWeb query classification020204 information systems0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)020201 artificial intelligence & image processingtiedonhakuhakutuloksetsearch result diversification
researchProduct

Listwise Collaborative Filtering

2015

Recently, ranking-oriented collaborative filtering (CF) algorithms have achieved great success in recommender systems. They obtained state-of-the-art performances by estimating a preference ranking of items for each user rather than estimating the absolute ratings on unrated items (as conventional rating-oriented CF algorithms do). In this paper, we propose a new ranking-oriented CF algorithm, called ListCF. Following the memory-based CF framework, ListCF directly predicts a total order of items for each user based on similar users' probability distributions over permutations of the items, and thus differs from previous ranking-oriented memory-based CF algorithms that focus on predicting th…

ta113business.industryComputer scienceRecommender systemMachine learningcomputer.software_genreRankingcollaborative filteringBenchmark (computing)Collaborative filteringProbability distributionPairwise comparisonData miningArtificial intelligencerecommender systemsbusinessFocus (optics)computerranking-oriented collaborative filtering
researchProduct

Learning to Rank Images for Complex Queries in Concept-based Search

2018

Concept-based image search is an emerging search paradigm that utilizes a set of concepts as intermediate semantic descriptors of images to bridge the semantic gap. Typically, a user query is rather complex and cannot be well described using a single concept. However, it is less effective to tackle such complex queries by simply aggregating the individual search results for the constituent concepts. In this paper, we propose to introduce the learning to rank techniques to concept-based image search for complex queries. With freely available social tagged images, we first build concept detectors by jointly leveraging the heterogeneous visual features. Then, to formulate the image relevance, …

Theoretical computer scienceCognitive Neuroscience02 engineering and technologyfactorization machineRanking (information retrieval)Set (abstract data type)Artificial Intelligence020204 information systems0202 electrical engineering electronic engineering information engineeringRelevance (information retrieval)tiedonhakukuvatMathematicslearning to rankta113InternetConcept searchRank (computer programming)kuvahakuComputer Science Applicationscomplex query020201 artificial intelligence & image processingLearning to rankPairwise comparisonconcept-based image searchSemantic gapNeurocomputing
researchProduct

Ranking-Oriented Collaborative Filtering: A Listwise Approach

2016

Collaborative filtering (CF) is one of the most effective techniques in recommender systems, which can be either rating oriented or ranking oriented. Ranking-oriented CF algorithms demonstrated significant performance gains in terms of ranking accuracy, being able to estimate a precise preference ranking of items for each user rather than the absolute ratings (as rating-oriented CF algorithms do). Conventional memory-based ranking-oriented CF can be referred to as pairwise algorithms. They represent each user as a set of preferences on each pair of items for similarity calculations and predictions. In this study, we propose ListCF, a novel listwise CF paradigm that seeks improvement in bot…

Computer science02 engineering and technologyRecommender systemcomputer.software_genreMachine learningSet (abstract data type)020204 information systems0202 electrical engineering electronic engineering information engineeringCollaborative filteringDivergence (statistics)ranking-oriented collaborative filteringta113business.industryGeneral Business Management and AccountingComputer Science ApplicationsRankingcollaborative filteringBenchmark (computing)Probability distribution020201 artificial intelligence & image processingPairwise comparisonArtificial intelligenceData miningrecommender systemsbusinesscomputerInformation SystemsACM Transactions on Information Systems
researchProduct