6533b857fe1ef96bd12b4435

RESEARCH PRODUCT

Behavior-based personalization in web search

Fei CaiMaarten De RijkeShuaiqiang Wang

subject

Information Systems and ManagementComputer Networks and CommunicationsComputer sciencehenkilökohtaistaminenInformationSystems_INFORMATIONSTORAGEANDRETRIEVALtiedonhakujärjestelmät02 engineering and technologyLibrary and Information SciencesPersonalizationRanking (information retrieval)Query expansionkustomointiWeb query classification020204 information systems0202 electrical engineering electronic engineering information engineeringRelevance (information retrieval)tiedonhakupersonointiInternetFocus (computing)Information retrievalWeb search queryPersonalized searchRankinghakupalvelut020201 artificial intelligence & image processingInformation Systems

description

Personalized search approaches tailor search results to users' current interests, so as to help improve the likelihood of a user finding relevant documents for their query. Previous work on personalized search focuses on using the content of the user's query and of the documents clicked to model the user's preference. In this paper we focus on a different type of signal: We investigate the use of behavioral information for the purpose of search personalization. That is, we consider clicks and dwell time for reranking an initially retrieved list of documents. In particular, we (i) investigate the impact of distributions of users and queries on document reranking; (ii) estimate the relevance of a document for a query at 2 levels, at the query‐level and at the word‐level, to alleviate the problem of sparseness; and (iii) perform an experimental evaluation both for users seen during the training period and for users not seen during training. For the latter, we explore the use of information from similar users who have been seen during the training period. We use the dwell time on clicked documents to estimate a document's relevance to a query, and perform Bayesian probabilistic matrix factorization to generate a relevance distribution of a document over queries. Our experiments show that: (i) for personalized ranking, behavioral information helps to improve retrieval effectiveness; and (ii) given a query, merging information inferred from behavior of a particular user and from behaviors of other users with a user‐dependent adaptive weight outperforms any combination with a fixed weight. peerReviewed

https://doi.org/10.1002/asi.23735