Search results for "neurotransmission"

showing 10 items of 171 documents

Atypical 1,4-dihydropyridine derivatives, an approach to neuroprotection and memory enhancement

2016

This mini review is devoted to the design and pharmacological studies of novel atypical 1,4-dihydropyridine (DHP) derivatives which differ to a great extent from the traditional DHPs either by lack of neuronal calcium channel blocking activity and/or inability to protect mitochondrial processes. About 100 new DHP derivatives were screened and the mostly active were selected for detailed studies. The compounds of the series of the amino acid ("free" plus "crypto")-containing DHPs and lipophilic di-cyclic DHPs demonstrated long-lasting neuroprotective and/or memory-enhancing action, particularly at low doses (0.005-0.05mg/kg) in different neurodeficiency rat or mice models, and exerted neurot…

0301 basic medicineGenetically modified mouseDihydropyridinesDHPSNeurotransmissionBiologyPharmacologyNeuroprotection03 medical and health sciences0302 clinical medicineMemoryAnimalsHumansPharmacologychemistry.chemical_classificationNeurotransmitter AgentsCalcium channelCalcium Channel BlockersNeuroprotectionAmino acid030104 developmental biologychemistrySynaptic plasticityNervous System DiseasesNeurotransmitter AgentsNeuroscience030217 neurology & neurosurgeryPharmacological Research
researchProduct

Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase.

2019

Summary: Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in th…

0301 basic medicineGlutamineCentral nervous systemNeurotransmissionBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleMidbrain03 medical and health sciencesGlutamatergic0302 clinical medicineGlutamate-Ammonia LigaseGlutamine synthetasemedicineAnimalslcsh:QH301-705.5Glutamate receptorBrainOligodendrocyteCell biologyGlutamineOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemlcsh:Biology (General)030217 neurology & neurosurgerySignal TransductionCell reports
researchProduct

Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitab…

2019

Shank3, a postsynaptic scaffolding protein involved in regulating excitatory synapse assembly and function, has been implicated in several brain disorders, including autism spectrum disorders (ASD), Phelan-McDermid syndrome, schizophrenia, intellectual disability, and mania. Here we generated and characterized a Shank3 knock-in mouse line carrying the Q321R mutation (Shank3Q321R mice) identified in a human individual with ASD that affects the ankyrin repeat region (ARR) domain of the Shank3 protein. Homozygous Shank3Q321R/Q321R mice show a selective decrease in the level of Shank3a, an ARR-containing protein variant, but not other variants. CA1 pyramidal neurons in the Shank3Q321R/Q321R hip…

0301 basic medicineHippocampusautism spectrum disorderBiologyNeurotransmissionElectroencephalographyInhibitory postsynaptic potentiallcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceExcitatory synapse assembly0302 clinical medicinePostsynaptic potentialexcitabilitymedicineself-groomingEEGMolecular Biologylcsh:Neurosciences. Biological psychiatry. Neuropsychiatrypatient mutationsOriginal Researchmedicine.diagnostic_testanxiety-like behaviorseizure susceptibilitymedicine.disease030104 developmental biologyShank3SchizophreniaExcitatory postsynaptic potentialNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters

2018

Lipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT-membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT-membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. Meanwhile…

0301 basic medicineMOLECULAR-DYNAMICS SIMULATIONSBIOMOLECULAR SYSTEMSkolesteroliasetyylikoliiniSynaptic TransmissionsolukalvotCell membranechemistry.chemical_compoundSCHIZOPHRENIAmolekyylidynamiikkamolecular dynamics (MD)neurotransmissionvälittäjäaineetChemistryLIPID-MEMBRANESGeneral NeurosciencePhosphatidylserineALZHEIMERS-DISEASEMembranemedicine.anatomical_structureHAMILTONIAN REPLICA EXCHANGElipids (amino acids peptides and proteins)dopamineIntracellularneurotransmittermonosialotetrahexosylganglioside (GM1)Synaptic cleftG(M1) GangliosideMolecular Dynamics SimulationNeurotransmission03 medical and health sciencesExtracellularmedicineAnimalsmonosialotetrahexosylgangliosidebinding free energyPhosphatidylglyceroldopamiiniBinding SitesCell Membranehistamiini3112 Neurosciencesta1182cholesterolBILAYERhistamineacetylcholinehermosolut030104 developmental biologyFORCE-FIELDBiophysicssynapsit
researchProduct

Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress

2016

Abstract Introduction Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. Methods In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days …

0301 basic medicineMaleDendritic spineDendritic SpinesHippocampusPSA‐NCAMCell CountNeural Cell Adhesion Molecule L1Hippocampal formationBiologyNeurotransmissionAmygdalaHippocampus03 medical and health sciencesBehavioral NeuroscienceMice0302 clinical medicineInterneuronsNeuroplasticitymedicineAnimalsChronic stressCA1 Region HippocampalOriginal ResearchInhibitionNeuronal PlasticityGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyfungiCA3 Region Hippocampalstructural plasticity030104 developmental biologymedicine.anatomical_structurenervous systemExcitatory postsynaptic potentialGAD67Sialic AcidsNeuroscience030217 neurology & neurosurgeryStress PsychologicalBrain and Behavior
researchProduct

Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells.

2018

Synaptic protein -synuclein (-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinsons disease. Here, we report that -SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also showthat premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking-SYN resemblesthe effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic -SYN. Interestingly…

0301 basic medicineMaleanimal diseases[SDV]Life Sciences [q-bio]DopamineNeurogenesisRegulatorniche biologyBiologyNeurotransmissionenvironment and public health03 medical and health scienceschemistry.chemical_compoundstemnessMice0302 clinical medicineNeural Stem CellsDopaminemedicineSubependymal zoneAnimalsHumansheterocyclic compoundsNeurons AfferentStem Cell NicheResearch ArticlesparkinsonismCellular SenescenceGeneral NeuroscienceMPTPDopaminergic NeuronsNeurogenesisDopaminergicBrainNeural stem cellMice Mutant Strains3. Good healthnervous system diseases[SDV] Life Sciences [q-bio]adult neurogenesis030104 developmental biologychemistrynervous systemalpha-SynucleinFemaleNeuroscience030217 neurology & neurosurgerySnca knock-outmedicine.drug
researchProduct

Hyperammonemia alters the mismatch negativity in the auditory evoked potential by altering functional connectivity and neurotransmission

2020

Minimal hepatic encephalopathy (MHE) is a neuropsychiatric syndrome produced by central nervous system dysfunction subsequent to liver disease. Hyperammonemia and inflammation act synergistically to alter neurotransmission, leading to the cognitive and motor alterations in MHE, which are reproduced in rat models of chronic hyperammonemia. Patients with MHE show altered functional connectivity in different neural networks and a reduced response in the cognitive potential mismatch negativity (MMN), which correlates with attention deficits. The mechanisms by which MMN is altered in MHE remain unknown. The objectives of this work are as follows: To assess if rats with chronic hyperammonemia rep…

0301 basic medicineMalehippocampusPopulationMismatch negativityNeurotransmissionStimulus (physiology)Auditory cortexBiochemistrySynaptic Transmissionbehavioral disciplines and activitiesmetabolic diseases03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineNeural PathwaysmedicineAnimalsHyperammonemiaEvoked potentialRats Wistareducationeducation.field_of_studybusiness.industryGlutamate receptorBrainHyperammonemiamedicine.diseaseencephalopathyRats030104 developmental biologyHepatic EncephalopathyEvoked Potentials AuditorybusinessNeuroscience030217 neurology & neurosurgerypsychological phenomena and processes
researchProduct

GABA-containing compound gammapyrone protects against brain impairments in Alzheimer's disease model male rats and prevents mitochondrial dysfunction…

2018

Neuroinflammation, oxidative stress, decreased glucose/energy metabolism, and disrupted neurotransmission are changes that occur early in sporadic Alzheimer's disease (AD), manifesting as mild cognitive impairment. Recently, the imbalanced function of the gamma-aminobutyric acid (GABA) system was identified as a critical factor in AD progression. Thus, maintaining balance among neurotransmitter systems, particularly the GABA system, can be considered a beneficial strategy to slow AD progression. The present study investigated the effects of the compound gammapyrone, a molecule containing three GABA moieties: "free" moiety attached to the position 4 of the 1,4-dihydropyridine (DHP) ring, and…

0301 basic medicineMalemedicine.medical_specialtyAllosteric regulationbioenergetics; GABA; intracerebroventricular streptozocin; PC12 cells; protein expression; spatial learning/memoryNeurotransmissionspatial learning/memorymedicine.disease_causebioenergeticsNeuroprotection03 medical and health sciencesCellular and Molecular NeuroscienceGABA0302 clinical medicineReceptors GABAAlzheimer DiseaseMemoryInternal medicinemedicineAnimalsRats WistarReceptorMaze Learningprotein expressionNeuroinflammationCells Culturedgamma-Aminobutyric AcidGABAA receptorChemistryGlutamate DecarboxylasePC12 cellsBrainintracerebroventricular streptozocinMitochondriaStreptozocinDisease Models Animal030104 developmental biologyEndocrinologyNeuroprotective AgentsAstrocytesAcetylcholinesteraseEncephalitisMicroglia030217 neurology & neurosurgeryOxidative stressJournal of neuroscience research
researchProduct

Neuronal Excitability And Spontaneous Synaptic Transmission In The Entorhinal Cortex Of Bdnf Heterozygous Mice

2018

Abstract Brain Derived Neurotropic Factor (BDNF) is a neutrophic factor that is required for the normal neuronal development and function. BDNF is involved in regulation of synapses as well as neuronal excitability. Entorhinal Cortex (EC) is a key brain area involved in many physiological and pathological processes. In this study we investigated the effects of chronically reduced BDNF levels on layer 3 pyramidal neurons of EC. We aimed to assess the effects of reduced levels of BDNF on firing properties, spontaneous synaptic currents and excitation/inhibition balance from acute brain slices. Patch clamp recordings were obtained from pyramidal neurons of Entorhinal Cortex Layer 3. Findings o…

0301 basic medicineMalemedicine.medical_specialtyHeterozygoteAction potentialAction PotentialsNeurotransmissionInhibitory postsynaptic potentialSynaptic Transmission03 medical and health sciencesMice0302 clinical medicineInternal medicinemedicinePremovement neuronal activityAnimalsEntorhinal CortexPatch clampChemistryGeneral NeuroscienceSpontaneous synaptic transmissionBrain-Derived Neurotrophic FactorExcitatory Postsynaptic PotentialsEntorhinal cortex030104 developmental biologyEndocrinologyInhibitory Postsynaptic Potentialsnervous systemGene Knockdown TechniquesExcitatory postsynaptic potentialFemale030217 neurology & neurosurgery
researchProduct

Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development

2020

VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of …

0301 basic medicineNeurogenesisSynaptogenesisNeurotransmissionInhibitory postsynaptic potentialHippocampusSynaptic Transmission03 medical and health sciencesGlutamatergicMice0302 clinical medicineVGCCsexcitation to inhibition balanceBiological neural networkPremovement neuronal activityAnimalsHumansCalcium SignalingResearch ArticlesNeuronssynaptogenesisChemistryGeneral NeuroscienceGlutamate receptornetwork connectivityRats030104 developmental biologyHEK293 CellsExcitatory postsynaptic potentialalpha2delta subunitsCalcium ChannelsNerve NetNeuroscience030217 neurology & neurosurgeryCellular/MolecularThe Journal of Neuroscience
researchProduct