Search results for "nitrous oxide"

showing 10 items of 78 documents

Mathematical modelling of greenhouse gas emissions from membrane bioreactors: A comprehensive comparison of two mathematical models.

2018

Abstract This paper compares two mathematical models (Model I and Model II) to predict greenhouse gases emission from a University Cape Town (UCT) – membrane bioreactor (MBR) plant. Model I considers N 2 O production only during denitrification. Model II takes into account the ammonia-oxidizing bacteria (AOB) formation pathways for N 2 O. Both models were calibrated adopting real data. Model comparison was performed in terms of (i) sensitivity analysis (ii) best fit and (iii) model prediction uncertainty. On average 6% of factors of Model I and 9% of Model II resulted to be important. In terms of best fit, Model II had a better capability of reproducing the measured data. The average effici…

DenitrificationEnvironmental EngineeringModel prediction0208 environmental biotechnologyBioreactorNitrous OxideSoil scienceBioengineering02 engineering and technology010501 environmental sciencesMembrane bioreactor01 natural sciencesN2O modellingGreenhouse GasesSouth AfricaBioreactorsNutrient removalBioreactorSensitivity (control systems)Waste Management and Disposal0105 earth and related environmental sciencesMathematicsWWTPMathematical modelSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentGeneral MedicineModels Theoretical020801 environmental engineeringGreenhouse gasGreenhouse GaseBioresource technology
researchProduct

Modelling denitrification including the dynamics of denitrifiers and their progressive ability to reduce nitrous oxide: comparison with batch experim…

2005

Nitrous oxide contributes to the global greenhouse effect and affects the chemistry of O 3 in the upper troposphere and lower stratosphere. To define a relevant model for microbial NO 3 - and N 2 O reductions in soil and estimate the parameters involved, we propose a method combining measurements of anaerobic soil slurry and simulations of NO 3 - and N 2 O reductions, including non-enzymatic competition between NO 3 - and N 2 O as electron acceptors and the microbial dynamics of two denitrifier groups that are either able or unable to reduce N 2 O. Three models varying in the description of soil capability to reduce N 2 O through denitrification were assessed. The procedure was applied on a…

DenitrificationKineticsSoil ScienceMineralogyBiomass[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyBacterial growthReductaseQUALITE DES SOLS03 medical and health scienceschemistry.chemical_compound[SDV.SA.SDS] Life Sciences [q-bio]/Agricultural sciences/Soil studyComputingMilieux_MISCELLANEOUSchemistry.chemical_classification0303 health sciences030306 microbiologyChemistry04 agricultural and veterinary sciencesNitrous oxideElectron acceptorAnoxic waters6. Clean water13. Climate actionEnvironmental chemistry040103 agronomy & agriculture0401 agriculture forestry and fisheries
researchProduct

Comparison of Two Mathematical Models for Greenhouse Gas Emission from Membrane Bioreactors

2017

In this study two mathematical models (Model I and Model II), able to predict the nitrous oxide (N2O) and carbon dioxide (CO2) emission from an University Cape Town (UCT) – membrane bioreactor (MBR) plant, have been compared. Model I considers the N2O production only during the denitrification. Model II takes into account the two ammonia-oxidizing bacteria (AOB) formation pathways for N2O. Both models were calibrated adopting real data. Results highlight that Model II had a better capability of reproducing the measured data especially in terms of N2O model outputs. Indeed, the average efficiency related to the N2O model outputs was equal to 0.3 and 0.38 for Model I and Model II respectively.

DenitrificationSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleMathematical modelEnvironmental engineeringgreenhouse gases.Nitrous oxideMembrane bioreactorN2O modellingchemistry.chemical_compoundMembranechemistryGreenhouse gasCarbon dioxideBioreactorEnvironmental sciencenutrient removalWWTP N2O modelling Nutrient removal Greenhouse gasesWWTP
researchProduct

Insights into the effect of soil pH on N(2)O and N(2) emissions and denitrifier community size and activity.

2010

ABSTRACT The objective of this study was to investigate how changes in soil pH affect the N 2 O and N 2 emissions, denitrification activity, and size of a denitrifier community. We established a field experiment, situated in a grassland area, which consisted of three treatments which were repeatedly amended with a KOH solution (alkaline soil), an H 2 SO 4 solution (acidic soil), or water (natural pH soil) over 10 months. At the site, we determined field N 2 O and N 2 emissions using the 15 N gas flux method and collected soil samples for the measurement of potential denitrification activity and quantification of the size of the denitrifying community by quantitative PCR of the narG , napA ,…

DenitrificationSoil testNitrogenNitrous OxideNITROUS-OXIDE EMISSIONSDINITROGENNITRIFICATIONApplied Microbiology and BiotechnologyDNA RibosomalMicrobial EcologyDenitrifying bacteriaSoilSoil pHRNA Ribosomal 16SNitrogen cycleNitritesSoil Microbiology[SDV.EE]Life Sciences [q-bio]/Ecology environmentEcologyNitrogen IsotopesChemistrySoil classificationBiodiversityHydrogen-Ion ConcentrationAgronomySoil waterMetagenomeABUNDANCESoil microbiologyNITRATEFood ScienceBiotechnologyApplied and environmental microbiology
researchProduct

Nitrous oxide from integrated fixed-film activated sludge membrane bioreactor: Assessing the influence of operational variables

2017

The influence of the main operational variables on N2O emissions from an Integrated Fixed Film Activated Sludge University of Cape Town membrane Bioreactor pilot plant was studied. Nine operational cycles (total duration: 340 days) were investigated by varying the value of the mixed liquor sludge retention time (SRT) (Cycles 1–3), the feeding ratio between carbon and nitrogen (C/N) (Cycles 4–6) and simultaneously the hydraulic retention time (HRT) and the SRT (Cycles 7–9). Results show a huge variability of the N2O concentration in liquid and off-gas samples (ranged from 10−1μg N2O-N L−1to 103μg N2O-N L−1). The maximum N2O concentration (1228 μg N2O-N L−1) in the off-gas sa…

Environmental EngineeringDenitrificationHydraulic retention timeHRT0208 environmental biotechnologySRTchemistry.chemical_elementUCT-IFAS-MBRBioengineering02 engineering and technology010501 environmental sciencesMembrane bioreactorWaste Disposal Fluid01 natural sciencesBioreactorsBioreactorWaste Management and Disposal0105 earth and related environmental sciencesNitrous oxideSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryEnvironmental engineeringGeneral MedicinePulp and paper industryAnoxic watersNitrogen020801 environmental engineeringActivated sludgeDenitrificationAerationC/NBioresource Technology
researchProduct

Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on different MBR configurations

2018

Abstract This study aimed at evaluating the nitrous oxide (N2O) emissions from membrane bioreactors (MBRs) for wastewater treatment. The study investigated the N2O emissions considering multiple influential factors over a two-year period: (i) different MBR based process configurations; (ii) wastewater composition (municipal or industrial); (iii) operational conditions (i.e. sludge retention time, carbon-to-nitrogen ratio, C/N, hydraulic retention time); (iv) membrane modules. Among the overall analysed configurations, the highest N2O emission occurred from the aerated reactors. The treatment of industrial wastewater, contaminated with salt and hydrocarbons, provided the highest N2O emission…

Environmental EngineeringDenitrificationHydraulic retention timeNitrogen0208 environmental biotechnologyNitrous Oxidechemistry.chemical_element02 engineering and technology010501 environmental sciencesglobal warmingWaste Disposal Fluid01 natural sciencesIndustrial wastewater treatmentMBRGreenhouse GasesBioreactorsSurveys and Questionnaires0105 earth and related environmental sciencesWater Science and Technologynitrous oxide emissionSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientalePulp and paper industryNitrogen020801 environmental engineeringwastewater treatmentchemistryWastewaterDenitrificationEnvironmental scienceSewage treatmentAerationWaste disposal
researchProduct

Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment

2018

Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO3 − removal and N2O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO3 − concentrations (30, 50, 75 mg NO3-N L−1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification pro…

Environmental EngineeringDenitrificationSettore AGR/13 - Chimica Agrariachemistry.chemical_element010501 environmental sciencesNitrogen cycle01 natural scienceschemistry.chemical_compoundPermeable reactive barriersBiological groundwater denitrificationEnvironmental ChemistryNitriteWaste Management and DisposalEffluentNitrogen cycle0105 earth and related environmental sciencesNitrous oxideSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleBiotrench04 agricultural and veterinary sciencesNitrous oxidePollutionchemistryGreenhouse gasEnvironmental chemistry040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceCarbonGroundwater
researchProduct

Greenhouse gases from sequential batch membrane bioreactors: A pilot plant case study

2016

Abstract The paper reports the results of nitrous oxide (N 2 O) emissions from aerobic and anoxic tank of a Sequential Batch Membrane Bioreactor (SB-MBR) pilot plant. The influence of salinity variation on N 2 O emission was analyzed by gradually increasing the inlet salt concentration from 0 to 10 g NaCl L −1 . The observed results showed that the N 2 O concentration of the gaseous samples was strongly influenced by the salt concentration. This result was likely related to a worsening of the nitrification activity due to the effect of salinity on autotrophic bacteria. Dissolved oxygen concentration and salinity were found to be the key factors affecting N 2 O concentration in the gaseous s…

Environmental EngineeringEnvironmental preservation0208 environmental biotechnologyBiomedical EngineeringBioengineeringSequencing batch reactorWastewater treatment02 engineering and technology010501 environmental sciencesMembrane bioreactor01 natural scienceschemistry.chemical_compoundBioprocess monitoringBioreactor0105 earth and related environmental sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryGlobal warming potentialtechnology industry and agricultureEnvironmental engineeringNitrous oxideAnoxic waters020801 environmental engineeringSequencing batch reactorSalinityPilot plantEnvironmental chemistryMembrane bioreactorNitrificationBioprocess monitoring; Environmental preservation; Global warming potential; Membrane bioreactors; Sequencing batch reactor; Wastewater treatment; Biotechnology; Bioengineering; Biomedical Engineering; Environmental EngineeringBiotechnologyBiochemical Engineering Journal
researchProduct

Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors

2017

Abstract The present paper reports the results of a nitrous oxide (N 2 O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N 2 O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N 2 O was, however, also found in the anaerobic …

Environmental EngineeringHydraulic retention timeNitrogen0208 environmental biotechnologySettore AGR/13 - Chimica AgrariaBioreactorNitrous Oxidechemistry.chemical_elementPilot Projects02 engineering and technology010501 environmental sciencesManagement Monitoring Policy and LawMembrane bioreactor01 natural sciencesEmission factorWaste Disposal FluidMBRDenitrifying bacteriachemistry.chemical_compoundBioreactorsBioreactorPilot ProjectEmission factor; IFAS; MBR; Nitrous oxide; UCT; Denitrification; Gases; Nitrogen; Nitrous Oxide; Phosphorus; Pilot Projects; Sewage; Waste Disposal Fluid; Bioreactors; Environmental Engineering; Waste Management and Disposal; Management Monitoring Policy and LawWaste Management and Disposal0105 earth and related environmental sciencesSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryGasePhosphoruPhosphorusGeneral MedicineNitrous oxideIFASNitrogen020801 environmental engineeringPilot plantActivated sludgeEnvironmental chemistryDenitrificationUCTGases
researchProduct

Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

2012

Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L-1) and total nitrite concentrations (ranging from 3 to 43 mg NO2-N L-1). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obt…

Environmental EngineeringInorganic chemistryAmmonia oxidizing bacteriaNitrous OxideBioengineeringPilot Projectschemistry.chemical_compoundOxidizing agentpH effectParameter calibrationAmmoniumNitriteAmmonium oxidationWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEFree ammoniaNitrous acidFree nitrous acidbiologyRenewable Energy Sustainability and the EnvironmentGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationQuaternary Ammonium CompoundsKineticsActivated sludgechemistrySaturation (chemistry)BacteriaBioresource technology
researchProduct