Search results for "nucl-ex"

showing 10 items of 1009 documents

Coulomb excitation of 222Rn

2022

International audience; The nature of quadrupole and octupole collectivity in $^{222}$Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive $^{222}$Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball $\gamma$ -ray spectrometer following the bombardment of two targets, $^{120}$Sn and $^{60}$Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10 ¯h and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11) $e$ fm$^2$ . The values of the int…

A ≥ 220electromagnetic transitionsnuclear structure & decaysNuclear Physics - Experimentradon[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ydinfysiikka114 Physical sciences
researchProduct

Buffer-gas-free mass-selective ion centering in Penning traps by simultaneous dipolar excitation of magnetron motion and quadrupolar excitation for i…

2012

A new excitation scheme of the radial ion-motional modes is introduced for Penning-trap ion-cyclotron-resonance experiments. By simultaneous dipolar excitation of the magnetron motion and resonant quadrupolar excitation for the conversion between magnetron motion and cyclotron motion, a mass-selective recentering of the ions of interest is performed while all other (contaminant) ions are ejected from the trap. This new technique does not rely on the application of a buffer gas as presently used [G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L Schweikhard, H. Stolzenberg, U. Wiess, Physics Letters A 158 (1991) 247] and will thus prevent charge-exchange reactions and da…

ACCURACYBuffer gasCyclotronMotion (geometry)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ISOLTRAP01 natural sciencesIonlaw.inventionlaw0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsInstrumentationSpectroscopyNUCLEIChemistry010401 analytical chemistryRAMSEY METHODRESONANCECondensed Matter PhysicsPenning trap0104 chemical sciencesCAPTUREDipoleOCTUPOLAR EXCITATIONSPECTROMETRYCavity magnetronMODESAtomic physicsAXIALIZATIONExcitationInternational Journal of Mass Spectrometry
researchProduct

Response of AGATA segmented HPGe detectors to gamma rays up to 15.1MeV

2013

WOS: 000314826000009

AGATA; Gamma-ray spectroscopy; Gamma-ray tracking; HPGe detectors; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulationsNuclear and High Energy PhysicsPulse-shape and gamma-ray tracking algorithmsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSemiconductor detector performance and simulationsTracking (particle physics)01 natural sciencesNuclear physicsGamma-ray tracking0103 physical sciencesGamma spectroscopyddc:530Gamma-ray spectroscopyNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentDetectors de radiacióPhysicsSpectrometer010308 nuclear & particles physicsDetectorHPGe detectorsGamma ray81V35Semiconductor detectorAGATAFísica nuclearHpge detectorAGATA
researchProduct

The IceCube data acquisition system: Signal capture, digitization, and timestamping

2008

IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, func…

AMANDANuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesAstrophysicsNeutrino telescopeSignalHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryNuclear physicsHigh Energy Physics - Experiment (hep-ex)IcecubeData acquisitionSignal digitizationddc:530Nuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationPhysicsbusiness.industryAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAMANDA; Icecube; Neutrino telescope; Signal digitizationTimestampingInstrumentation and Detectors (physics.ins-det)Analog signalTransmission (telecommunications)Systems designTimestampbusinessComputer hardware
researchProduct

New exotic beams from the SPIRAL 1 upgrade

2018

Since 2001, the SPIRAL 1 facility has been one of the pioneering facilities in ISOL techniques for reaccelerating radioactive ion beams: the fragmentation of the heavy ion beams of GANIL on graphite targets and subsequent ionization in the Nanogan ECR ion source has permitted to deliver beams of gaseous elements (He, N, O, F, Ne, Ar, Kr) to numerous experiments. Thanks to the CIME cyclotron, energies up to 20 AMeV could be obtained. In 2014, the facility was stopped to undertake a major upgrade, with the aim to extend the production capabilities of SPIRAL 1 to a number of new elements. This upgrade, which is presently under commissioning, consists in the integration of an ECR booster in the…

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsNuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]tutkimuslaitteetCyclotronFOS: Physical scienceshiukkaskiihdyttimet[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex7. Clean energy01 natural sciencesIonlaw.inventionion sourceslawIonization0103 physical sciencesIon sourcesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)radioactive ion beams010306 general physicsNuclear ExperimentInstrumentationRadioactive ion beamsphysics.acc-ph[PHYS]Physics [physics]Physics010308 nuclear & particles physicsAccelerators and Storage RingsIon sourceUpgradesäteilyfysiikkaBeamlinePhysics - Accelerator PhysicsAGATABeam (structure)
researchProduct

Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

2014

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in ord…

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Monte Carlo methodFOS: Physical sciencesSuperconducting magnetTracking (particle physics)law.inventionNuclear physicslawlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)Large Hadron Collider (France and Switzerland)Nuclear ExperimentPhysicsLarge Hadron ColliderColliders (Nuclear physics)Particle acceleratorCollimatorSurfaces and InterfacesAccelerators and Storage RingsOrders of magnitude (time)lcsh:QC770-798Physics::Accelerator PhysicsPhysics - Accelerator PhysicsBeam (structure)
researchProduct

International workshop on next generation gamma-ray source

2022

Journal of physics / G 49(1), 010502 (2022). doi:10.1088/1361-6471/ac2827

Accelerator Physics (physics.acc-ph)Nuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theorynucleon: structurepi: photoproduction[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]conference summarynuclear astrophysicsFOS: Physical scienceslow-energy QCD[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530bremsstrahlung01 natural scienceselectron: acceleratorNuclear Theory (nucl-th)parity: violationnuclear physicsquantum chromodynamics0103 physical sciencesAgency (sociology)ddc:530gamma-rayApplied researchNuclear Experiment (nucl-ex)010306 general physicsphoton: beamNuclear Experimentactivity reportenergy: lowPhysicsastrophysics010308 nuclear & particles physicsInformation sharinglaserhadronic parity violationgamma raynuclear structureSystems engineeringPhysics - Accelerator PhysicsCompton scatteringJournal of Physics G: Nuclear and Particle Physics
researchProduct

Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with RADRIS

2022

International audience; The radiation detection resonance ionization spectroscopy (RADRIS) technique enables laser spectroscopic investigations of the heaviest elements which are produced in atom-at-a-time quantities from fusion-evaporation reactions. To achieve a high efficiency, laser spectroscopy is performed in a buffer-gas environment used to thermalize and stop the high-energy evaporation residues behind the velocity filter SHIP. The required cyclic measurement procedure in combination with the applied filament collection for neutralization as well as confinement of the stopped ions and subsequent pulse-heat desorption constrains the applicability of the technique. Here, some of these…

Actinidesactinideslaser spectroscopygas celltutkimusmenetelmätSuper heavy elements[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Laser spectroscopy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]laserspektroskopiasuper heavy elementsGas cell
researchProduct

Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

2015

To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility…

ActiniumNuclear and High Energy PhysicsRocket engine nozzleSeparator (oil production)chemistry.chemical_elementactinium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance ionization spectroscopylaw.inventionAtmospheric-pressure laser ionizationlawIonization0103 physical sciencesPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopyInstrumentationGas jetJet (fluid)ta114010308 nuclear & particles physicsChemistrygas cellLaserActiniumresonance ionization spectroscopygas jetAtomic physicsGas cellNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Ultracold Rare-Earth Magnetic Atoms with an Electric Dipole Moment

2018

We propose a new method to produce an electric and magnetic dipolar gas of ultracold dysprosium atoms. The pair of nearly degenerate energy levels of opposite parity, at 17513.33 cm$^{-1}$ with electronic angular momentum $J=10$, and at 17514.50 cm$^{-1}$ with $J=9$, can be mixed with an external electric field, thus inducing an electric dipole moment in the laboratory frame. For field amplitudes relevant to current-day experiments, we predict a magnetic dipole moment up to 13 Bohr magnetons, and an electric dipole moment up to 0.22 Debye, which is similar to the values obtained for alkali-metal diatomics. When a magnetic field is present, we show that the electric dipole moment is strongly…

Angular momentumAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAtomicPhysics - Atomic Physics010305 fluids & plasmas[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Electric field0103 physical sciencesPhysics::Atomic Physics010306 general physicsPhysicsQuantum PhysicsMagnetic moment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Degenerate energy levelsMolecularand Optical Physics3. Good healthMagnetic fieldElectric dipole momentDipoleAmplitudeQuantum Gases (cond-mat.quant-gas)[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct